Performance, Meat Quality and Blood Composition of Cross Bred Chicks Fed Various Organic Dietary CP and ME

ME와 CP가 다른 유기사료 급여가 토종닭의 생산능력 계육품질 및 혈액성상에 미치는 영향

  • 박재홍 (축산과학원 가금과) ;
  • 정용대 (전북대학교 동물소재공학과) ;
  • 윤명자 (전북대학교 동물소재공학과) ;
  • 류경선 (전북대학교 동물소재공학과)
  • Received : 2010.05.26
  • Accepted : 2010.06.21
  • Published : 2011.06.30

Abstract

This study was conducted to investigate the effect of organic dietary metabolizable energy (ME) and crude protein (CP) on productivity, meat quality and blood composition of crossbred chicks (hanhyub 3 ho) for different growring periods. Experiments were factorially designed with ME 3,000, 3,100kcal/kg and CP 21, 22, 23% for starter (0-4wks); ME 3,100, 3,150, 3,200kcal/kg and CP 18, 19, 20% for grower (5-8wks); ME 3,100, 3,150, 3,200kcal/kg and CP 15, 16, 17% for finisher (9-10wks). The total number of chicks and replicate of each treatment for starter, grower, finisher were 720, 4; 702, 6; 468, 4, respectively. The diets was mixed with more 90% organic feed ingredients. The productivity were not influence by dietary ME for starting period. Weight gain and feed intake were significantly increased in CP 23% treatment than CP 21, 22% treatment (P<0.05). FCR was improved as dietary CP increased (P<0.05). Weight gain was tended to be increased by decreaing ME content and increasing CP contents for growing period. Feed intake showed no difference among the ME and CP treatment groups. FCR improved significantly in CP 19, 20% compared with CP 18% (P<0.05). Weight gain was not significantly different between ME and CP treatments for finishing period. Feed intake was lower in ME 3,150, 3,200kcal/kg than the ME 3,100 kcal/kg treatment (P<0.05). FCR was higher in ME 3,100kcal/kg than ME 3,150, 3,200kcal/kg treatment (P<0.05). Interaction on productivity was not exited between ME and CP treatment groups for different feeding periods. There was no difference in the total protein, albumin, glucose and triglyceride amount in blood depending on dietary ME and CP contents. Total cholesterol was greatly decreased in ME 3,100kcal/kg than the ME 3,200kcal/kg (P<0.05), but not different between CP treatments. Cooking loss of breast meat was lower in ME 3,150kcal/kg than the ME 3,200kcal/kg (P<0.05). Moisture, shear force and pH were not statistically different among treatments. Protein solubility was increased by increasing ME and CP in diets. The collagen was tended to increase as dietary ME increased. Redness was remarkably higher in ME 3,150kcal/kg than the ME 3,100kcal/kg (P<0.05). Yellowness of meat fed ME 3,150kcal/kg showed significantly lower than other treatments (P<0.05). Therefore, the optium ME and CP to improve the productivity for each period were 3,000kcal/kg, 23%; 3,100kcal/kg, 19%; 3,150kcal/kg, CP 16%, repectively.

본 연구는 토종닭(한협 3호)에 사육 기간별 대사에너지 및 단백질 수준이 다른 유기사료의 급여가 생산성, 계육품질, 혈액성상에 미치는 영향을 구명하기 위하여 수행하였다. 실험설계는 전기, 중기, 후기에 각각 $2{\times}3$(ME 3,000, 3,100kcal/kg; CP 21, 22, 23%), $3{\times}3$(ME 3,100, 3,150, 3,200kcal/kg; CP 18, 19, 20%), $3{\times}3$(ME 3,100, 3,150, 3,200kcal/kg; CP 15, 16, 17%) 요인실험이며 처리구당 총 공시수 및 반복은 전기에 720수, 4반복, 중기에 702수, 6반복, 후기에 468수, 4반복으로 하였다. 사육 전기 4주간에 사료에너지 수준은 생산성에 영향을 미치지 않았지만 CP는 23% 처리구에서 증체량, 사료섭취량이 21, 22% 처리구보다 매우 증가하였다(P<0.05). 사료요구율은 사료내 단백질 수준이 높을수록 개선되었다(P<0.05). 사육 중기에 증체량은 사료내 에너지가 낮을수록, 단백질은 높을수록 증가하는 경향을 나타내었다. 사료내 에너지 및 단백질 수준은 사료섭취량에 영향을 미치지 않았다. 사료에너지 수준에 따른 사료요구율은 CP 19, 20% 처리구에서 18% 처리구보다 개선되었다(P<0.05). 사육 후기 증체량은 사료에너지와 단백질 수준에 따른 차이가 없었다. 사료섭취량은 ME 3,150, 3,200kcal/kg 처리구에서 ME 3,100 kcal/kg보다 감소하였지만 사료요구율은 개선되었다(P<0.05). 혈중 총단백질, 알부민, 글루코오스, 중성지방은 에너지 및 단백질수준에 따른 차이가 없었다. 혈중 총콜레스테롤은 ME 3,100kcal/kg 처리구에서 ME 3,200kcal/kg 처리구보다 감소하였고 CP 처리구간 차이는 없었다(P<0.05). 가열감량은 ME 3,150kcal/kg 처리구에서 ME 3,200kcal/kg 처리구보다 감소하였다(P<0.05). 수분함량, 전단력, pH은 ME, CP 처리구간 차이를 나타내지 않았다. 단백질용해성은 에너지 및 단백질수준이 높을수록 증가하였다. 계육내 콜라겐(collagen) 함량은 에너지 수준이 높을수록 증가하는 경향이 있다. 계육의 백색도는 사료내 에너지수준이 감소할수록, 단백질수준은 증가할수록 개선되는 경향이 있었다. 적색도는 ME 3,150kcal/kg 처리구에서 ME 3,100kcal/kg 보다 증가하였다(P<0.05). 황색도는 ME 3,100, 3,200kcal/kg 처리구에서 낮아졌으며, CP 15, 17% 처리구에서 CP 16% 처리구보다 매우 낮아졌다(P<0.05). 따라서, 사육기간별 적정 유기사료내 에너지 및 단백질수준은 사육전기 4주간에 ME 3,000kcal/kg, CP 23%, 중기 4주간에 ME 3,100kcal/kg, CP 19%, 후기 2주간에 ME 3,150kcal/kg, CP 16% 급여가 생산성 개선에 적합하였다.

Keywords

References

  1. 국립농산물품질관리원. 친환경인증통계정보. http://www.enviagro.go.kr/portal/info/Info _statistic_cond.jsp
  2. 나재천.박성복.방한태.강환구.김민지.최희철.서옥석.류경선.장형관.최종태. 2009.단백질 및 대사 에너지 수준이 유색 육용계의 생산성 및 도체율에 미치는 영향. 한국가금학회 36(1): 23-28.
  3. 이현수.강보석.나재천.류경선. 2008. 사료단백질 및 에너지 수준이 재래닭의 성장과 혈액의 성상에 미치는 영향. 한국가금학회 35(4): 399-405.
  4. 유동조.나재천.최희철.방한태.김상호.강근호.강환구.서옥석. 2008 . 유기산란계 에너지 ․ 단백질 수준이 산란 생산성 및 계란 품질에 미치는 영향. 한국가금학회지 35(4):367-373.
  5. 정용대.윤명자.류명선.류경선. 2009. 유색육용계의 사료내 다양한 에너지 및 단백질 수준이 생산 능력, 혈액 성상, 계육 품질에 미치는 영향. 한국가금학회 36(1): 57-67.
  6. Allen, C. D., S. M. Russell, and D. L. Fletcher. 1997. The relationship of broiler breast meat color and pH to shelf life and odor development. Poultry Sci. 76: 1042-1046. https://doi.org/10.1093/ps/76.7.1042
  7. Ao, T., J. L. Pierce, R. Power, A. J. Pescatore, A. H. Cantor, K. A. Dawson, and M. J. Ford. 2009. Effects of feeding different forms of zinc and copper on the performance and tissue mineral content of chicks. Poultry Sci. 2171-2175.
  8. Barbut S. 1993. Colour measurement for evaluating the pale soft exudative (PSE) occurrence in turkey meat. Food Res. Int. 26: 39-43. https://doi.org/10.1016/0963-9969(93)90103-P
  9. Berg, C. 2001. Health and welfare in organic poultry production. Acta Vet. Scand. 95:37-45.
  10. Bestman, M. W. P. and J. P. Wagenaar. 2003. Farm level factors associated with feather pecking in organic laying hens. Livestock Prod. 80: 133-140. https://doi.org/10.1016/S0301-6226(02)00314-7
  11. Castellini, C., C. Mugnai, and A. Dal Bosco. 2002. Effect of organic production system on broiler carcass and meat quality. Meat Sci. 60: 219-225. https://doi.org/10.1016/S0309-1740(01)00124-3
  12. Coro, F. A. G., E. Y. Youssef, and M. Shimokomaki. 2003. Age related changes in poultry breast meat collagen pyridinoline and texture. J. Food Biochem. 26: 533-541.
  13. Du. M. and D. U. Ahn. 2002. Effect of dietary conjugated linoleic acid on the growth rate of live birds and on the abdominal fat content and quality of broiler meat. Poultry Sci 81: 428-433. https://doi.org/10.1093/ps/81.3.428
  14. Fanatico, A. C., P. B. Pillai, L. C., Cavitt, C. M., Owens, and J. L. Emmert. 2005. Evaluation of slower-growing broiler genotypes grown with and without outdoor Access: growth performance and carcass yield. Poultry Sci. 84: 1321-1327. https://doi.org/10.1093/ps/84.8.1321
  15. Fiks-van Niekerk, T. G. C. M., B. F. J. Reuvekamp, and W. J. M. Landman. 2003. Monitoring research on organic farms: more infections than in battery cages. De pluimveehouderij. 33(2):10-11.
  16. Fletcher D. L. 1999. Broiler breast meat color variation, pH and texture. Poultry Sci. 78:1323-1327. https://doi.org/10.1093/ps/78.9.1323
  17. Ghazanfari, S., H. Kermanshahi, M. R. Nassiry, A. Golian, A. R. H. Moussavi, and A. Salehi. 2010. Effect of feed restriction and different energy and protein levels of the diet on growth performance and growth hormone in broiler chicken s. J. Biol. Sci. 10(1): 25-30. https://doi.org/10.3923/jbs.2010.25.30
  18. Hammershoj, M. and S. Steefeldt. 2005. Effects of blue lupin (Lupinus angustifolius) in organic layer diets and supplementation with for aging material on eggproduction and some egg quality parameters. Poultry. Sci. 84: 723-733. https://doi.org/10.1093/ps/84.5.723
  19. Hegelund, L., J. T. Sorensen, and J. E. Hermansen. 2006. Welfare and productivity of laying hens in commercial organic egg production systems in Denmark. Wageningen J. Life Sci. 54(2): 147-155.
  20. Kamran, Z., M. Sarwar, M. Nisa, M. A. Nadeem, S. Mahmood, M. E. Babar, and S. Ahmed. 2008. Effect of Low-Protein Diets Having Constant Energy-to-Protein Ratio on Performance and Carcass Characteristics of Broiler Chickens from One to Thirty-Five Days of Age. Poutlry Sci. 87: 468-474.
  21. Kolar, K. 1990. Colorimetric determination of hydroxyproline as measure of collagen content in meat and meat products-NMKL Collaborative study. J. Assoc. Anal. Chem. 73: 54-57.
  22. Lyon, B. G., D. P. Smith, C. E. Lyon, and E. M. Savage. 2004. Effect of diet and feed withdrawal on sensory descriptive and instrumental profiles of broiler breast fillets. Poultry Sci. 83: 275-281. https://doi.org/10.1093/ps/83.2.275
  23. Malheiros, R. D., M. B. Moraes, A. Collin, P. J. Janssens, E. Decuypere, and J. Buyse. 2003. Dietary macronutrients, endocrine functioning and intermediary metabolism in broiler chickens: pair wise substitutions between protein, fat and carbohydrate. Nutr. Res. 23(4): 567-578. https://doi.org/10.1016/S0271-5317(03)00022-8
  24. Nissen, P. M. and J. F. Young. 2006. Creatine monohydrate and glucose supplementation to slow- and fast-growing chickens changes the postmortem pH in pectoralis major. Poultry Sci. 85: 1038-1044. https://doi.org/10.1093/ps/85.6.1038
  25. NRC. 1994. Nutrient requirements of Poultry. 9th ed. Natl. Acad. Press, Washington, DC.
  26. Osburn, W. N. and R. W. Mandigo. 1998. Reduced-fat bologna manufactured with poultry sking connective tissue gel. Poultry Sci. 77: 1574-1584. https://doi.org/10.1093/ps/77.10.1574
  27. Plumstead, W., H. Romero-Sanchez, N. D. Paton, J. W. Spears, and J. Brake. 2007. Effects of Dietary Metabolizable Energy and Protein on Early Growth Responses of Broilers to Dietary Lysine. Poultry Sci. 86: 2639-2648. https://doi.org/10.3382/ps.2007-00168
  28. Richards, M. P. 1997. Trace mineral metabolism in the avian embryo. Poultry Sci. 76:152-164. https://doi.org/10.1093/ps/76.1.152
  29. Salakova, A., E., Strakova, V., Valkova, H., Buchtova, and I., Steinhauserova. 2009. Quality indicators of chicken broiler raw and cooked meat depending on their sex. Acta Vet. Brno 78: 497-504. https://doi.org/10.2754/avb200978030497
  30. Samman, S., F. P. Kung, L. M. Carter, M. J. Foster, and Z. I. Ahmad. 2009. Fatty acid composition of certified organic, conventional and omega-3 eggs. Food Chem. 166: 911-914.
  31. Smith, D. M. 2001. Functional properties of muscle proteins in processed poultry products. In Poultry Meat Processing. (Sams, A. ed). Ch 11, pp. 181-195. CRC Press LLC, Boca Raton, Florida.
  32. Smith D. P., C. E. Lyon, and B. G. Lyon. 2002. The effect of age, dietary carbohydrate sours and feed withdrawal on broiler breast color. Poultry Sci. 81: 1584-1588. https://doi.org/10.1093/ps/81.10.1584
  33. Stewart, M. K., D. L., Fletcher, D., Hamm, and J. E. Thomson. 1984. The influence of hotboning broiler breast muscle on pH decline and toughening. Poultry sci. 63: 1935-1939. https://doi.org/10.3382/ps.0631935
  34. Swennen, Q., G. P. Janssens, E. Decuypere, and J. Buyse. 2004. Effects of substitution between fat and protein on feed intake and its regulatory mechanisms in broiler chickens: energy and protein metabolism and diet-induced thermogenesis. Poultry Sci. 83: 1997-2004. https://doi.org/10.1093/ps/83.12.1997
  35. Thamsborg, S. M., A. Roepstorff, and M. Larsen. 1999. Integrated and biological control of parasites in organic and conventional production systems. Verterinary Rarasitology 84: 169-186.
  36. Warner, R. D., R. G. Kauffman, and M. I. Greaser. 1997. Muscle protein changes post mortem in relation to pork quality traits. Meat sci. 45: 339-352. https://doi.org/10.1016/S0309-1740(96)00116-7
  37. Kreienbrock, L., J. Schal, M. Beyerbach, K. Rohn, S. Glaser, and S. Schneider. 2004. Orientierende epidemiologische Untersuchungen zum Leistungsniveau und Gesundheitsstatus in Legehennenhaltungen verschiedener Haltungssysteme. Abschlussbericht. Tierarztliche Hochschule Hannover, Germany.