DOI QR코드

DOI QR Code

Optimization of Extraction Conditions for Mate (Ilex paraguarensis) Ethanolic Extracts

Mate (Ilex paraguarensis) 에탄올 추출물의 추출조건 최적화

  • Yang, Su-Jin (Department of Food Science and Technology, Catholic University of Daegu) ;
  • Youn, Kwang-Sup (Department of Food Science and Technology, Catholic University of Daegu) ;
  • No, Hong-Kyoon (Department of Food Science and Technology, Catholic University of Daegu) ;
  • Lee, Shin-Ho (Department of Food Science and Technology, Catholic University of Daegu) ;
  • Hong, Joo-Heon (Department of Food Science and Technology, Catholic University of Daegu)
  • 양수진 (대구카톨릭대학교 식품가공학) ;
  • 윤광섭 (대구카톨릭대학교 식품가공학) ;
  • 노홍균 (대구카톨릭대학교 식품가공학) ;
  • 이신호 (대구카톨릭대학교 식품가공학) ;
  • 홍주헌 (대구카톨릭대학교 식품가공학)
  • Received : 2010.11.26
  • Accepted : 2011.04.29
  • Published : 2011.06.30

Abstract

This study was conducted to monitor the quality characteristics of mate (Ilex paraguarensis) ethanolic extracts via the response surface methodology. In the extraction conditions that were based on the central composite design with variations in the ethanol concentration (0-100%), extraction temperature($35-95^{\circ}C$), and the ratio of the solvent to the sample (10~30 mL/g). The extraction yield and total polyphenol content improved with the increase in the ethanol concentration than in the extraction temperature. The caffeic acid content increased with the decrease in the solvent ratio. The coefficients of determinations ($R^2$) were 0.8842 (p<0.05), 0.8729 (p<0.05), and 0.9205 (p<0.05) in terms of the electron donating ability, nitrite scavenging effect (pH 3.0), and SOD-like ability, respectively. The estimated conditions for the maximized extraction, including in terms of the yield, total polyphenol content, caffeic acid content, and electron donating ability, were a 21-48% ethanol concentration, a $76.4^{\circ}C$ extraction temperature, and 10-14mL/g solvent-to-sample ratio.

본 실험은 반응표면분석법을 이용하여 mate 에탄올 추출물의 이화학적 특성을 모니터링 하였다. 추출조건에 따른 수율 및 총 폴리페놀함량의 최대값은 예측된 정상점에서 능선분석을 실시하여 본 결과, 4.74%와 21.10 mg/mL이었다. 추출조건별 caffeic acid함량은 20.28~68.15 ${\mu}g$/mL의 범위였으며, 결과에 대한 반응표면 회귀식의 $R^2$는 0.9502로 1% 이내의 유의수준에서 인정되었는데, 시료에 대한 용매 비가 낮을수록 에탄올 농도 40~50%에서 가장 높음을 확인하였다. 전자공여능에 대한 회귀식의 $R^2$는 0.8842로 5%이내의 유의수준에서 유의성이 인정되었으며, 에탄올 농도에 크게 영향을 받고 있는 것으로 나타났다. 추출조건에 따른 아질산염 소거능은 pH가 낮을수록 아질산염 소거능이 증가하였으며, 시료에 때한 용매비와 추출온도의 영향은 뚜렷하게 나타나지 않았으나 에탄올 농도가 증가할수록 아질산염 소거능은 낮아짐을 알 수 있었다. SOD 유사활성은 에탄올 농도 및 추출온도에 따른 영향보다는 용매비에 많은 영향을 받음을 알 수 있었다. 추출물의 특성인 조건별 추출물의 수율, 총 폴리페놀함량, caffeic acid함량, 전자공여에 대해 contour map을 superimposing하여 얻은 최적 추출조건의 범위는 에탄올 농도 21~48%, 추출온도 $76.4^{\circ}C$, 시료에 대한 용매비가 10~14 mL/g으로 예측되었다.

Keywords

References

  1. Koh YJ, Cha DS, Choi HD, Park YK, Choi IW (2008) Hot water extraction optimization od Dandelion leaves to increase antioxidant activity. Korean J Food Sci Technol, 40, 283-289
  2. Halliwell B, Aruoma OJ (1991) DNA damage by oxygen-derived species. FEBS Lett, 281, 9-19 https://doi.org/10.1016/0014-5793(91)80347-6
  3. Jennings PE, Barnett AH (1988) New approaches to the pathogenesis and treatment of diabetic microangiopathy. Diabetic Med, 5, 111-117 https://doi.org/10.1111/j.1464-5491.1988.tb00955.x
  4. Fridovich I (1989) Superoxide dismutase an adaption to paramagnetic gas. J Biol Chem, 264, 7761-7762
  5. Jacques RA, Oliveira AP, Arruda EJ, Oliveira LC, Oliveira JV, Dariva C, Caramao EB (2007) Extraction of purine alkaloids from Mate (Ilex Paraguariensis) using supercritical $CO_{2}$. J Agric Food Chem, 55, 7510-7516 https://doi.org/10.1021/jf071545g
  6. Katia HK, Alexandre TC, Eloir PS, Grace G, Dominique G (1996) Mate saponin 5, a highly polar saponin from ILEX Paraguariensis. Phytochemistry, 42, 1119-1122 https://doi.org/10.1016/0031-9422(96)00036-2
  7. Rosangela AJ, Claudio D, Jose, VO, Elina BC (2008) Pressurized liquid extraction of mate tea leaves. Anal Chim Acta, 625, 70-76 https://doi.org/10.1016/j.aca.2008.07.002
  8. Manuella L, Frank SB, Bruna RS, Aline CB, Vera Lucia GK, Luis CP, Samuel SV (2008) Mate tea reduced acute lung inflammation in mice exposed to cigarette smoke. Nutrition, 24, 375-381 https://doi.org/10.1016/j.nut.2008.01.002
  9. Heck CI, Mejia EG (2007) Yerba mate tea (Ilex Paraguariensis): A comprehensive review on chemistry, health implications, and technological consideration. J Food Sci, 72, 138-151
  10. Jack LA, Li XC, Chowdhury FH, Dale GN, David MS, Paul M, Baskaran G, Josh D, Kristin RL, Ping Q (2005) Naturally occurring proteasome inhibitors from mate tea (Ilex Paraguariensis) serve as models for topical proteasome inhibitors. J Invest Dermatol, 125, 207-212 https://doi.org/10.1111/j.0022-202X.2005.23809.x
  11. Hong JH (2010) Quality characteristics of fermented Mate (Ilex paraguarensis) leaf tea. Korean J Food Preserv, 17, 500-506
  12. Rosana F, Silvina BL, Graciela F, Cesar GF (2000) Antioxidant activity of Ilex paraguariensis and related species. Nutrition Res, 20, 1437-1446
  13. Euclides LC, Osvaldo FF, Lucio CF, Maria LLF, Carmen MD, Jose AS (2007) Methylxanthines and phenolic compounds in mate (Ilex paraguariensis St Hil) progenies grown in Brazil. J Food Composition & Analysis, 20, 553-558 https://doi.org/10.1016/j.jfca.2007.04.007
  14. Claudia A, Graciela F, Rosana F (2006) Peroxidase-like activity of Ilex Paraguariensis. Food Chem, 97, 459-464 https://doi.org/10.1016/j.foodchem.2005.05.025
  15. Kim HK, Do JR, Hong JH, Lee GD (2005) Optimization of extraction conditions for cabbage. J. Korean Soc Food Sci Nutr, 34, 1625-1632 https://doi.org/10.3746/jkfn.2005.34.10.1625
  16. Kim JO, Kwon ST, Lee GD, Hong JH, Moon DH, Kim TW, Kim DI (2008) Optimization of extraction condition on fig (Ficus carica L.) by response surface methodology. Korean J Food Preserv, 15, 66-73
  17. Gontard N, Guilbert S, Cuq JL (1992) Edible wheat gluten films: Influence of the main process variables on film properties using response surface methodology. J Food Sci, 57, 190-196 https://doi.org/10.1111/j.1365-2621.1992.tb05453.x
  18. Lee GD, Lee JE, Kwon JH (2000) Application of response surface methodology in food industry. Food and Industry, 33, 33-45
  19. SAS (1990) SAS User's Guide. Statistical Analysis Systems Institute, Cary, NC, USA
  20. Official methods of analysis of the AOAC (1990) Fifteenth edition. USA, p 1010-1011
  21. Singleton VL, Rossi JA (1965) Colorimetry of total phenolics with phenolics with phosphomolybdic- phosphotungstic acid reagents. Am J Enol Viticult, 16, 144-158
  22. Lee EJ, Kim JS, Kwon JH (2008) Optimization of microwave-assisted extraction conditions for total catechin and electron donating ability of grape seed extracts. Korean J Food Preserv, 15, 840-846
  23. Gray JI, Dugan Jr LR (1975) Inhibition of N-nitrosamine formation in model food system. J Food Sci, 40, 981-984 https://doi.org/10.1111/j.1365-2621.1975.tb02248.x
  24. Kim SM, Cho YS, Sung SK (2001) The antioxidant ability and nitrite scavenging ability of plant extracts. Korean J Food Sci Technol, 33, 626-632
  25. Park NY, Lee GD, Jeong YJ, Kwon JH (1998) Optimization of extraction conditions for physicochemical properties of ethanol extracts from Chrysanthemum boreale. J Korean Soc Food Sc. Nutr, 27, 585-590
  26. Park KJ, Lim JH, Kim BK, Jeong JW, Kim JC, Lee MH, Cho YS, Jung HY (2009) Optimization of extraction conditions to obtain functional components from buckwheat (Fagopyum esculentum M.) sprouts, using response surface methodology. Korean J Food Preserv, 16, 734-741
  27. Chung MJ, Paul AW, Christer H (2006) Dietary phenolic antioxidants, caffeic acid and trolox, protect rainbow trout gill cells from nitric oxide-induced apoptosis. Aquatic Toxicology, 80, 321-328 https://doi.org/10.1016/j.aquatox.2006.09.009
  28. Lee HS, Lee HA, Hong CO, Yang SY, Hong SY, Park SY, Lee HJ, Lee KW (2009) Quantification of caffeic acid and rosmarinic acid and antioxidant activities of hot-water extracts from leaves of Perilla frutescens. Korean J Food Sci Technol, 41, 302-306
  29. Blois MS (1958) Antioxidant determination by the use of a stable free radical. Nature, 26, 1199-1204
  30. Yoon SR, Jeong YJ, Lee GD, Kwon JH (2003) Changes in phenolic compounds properties of Rubi Fructus extract depending on extraction conditions. J Korean Soc Food Sci Nutr, 32, 338-345 https://doi.org/10.3746/jkfn.2003.32.3.338
  31. Noh KS, Yang MO, Cho EJ (2002) Nitrite scavenging effect of Umbelliferaeceae. Korean J Soc Food Cookery Sci, 18, 8-12
  32. Davies R, Massey RC, McWeeny DJ (1980) The catalysis of the N-nitrosamine of secondary amines by nitrosophenols. J Food Chem, 6, 115-122 https://doi.org/10.1016/0308-8146(80)90027-8
  33. Kang YH, Park YK, Lee GD (1996) The nitrite scavenging and electron donating ability of phenolic compounds. Korean J Food Sci Technol, 28, 232-239
  34. Lee SJ, Chung MJ, Shin JH, Sung NJ (2000) Effect of natural plant components on the nitrite-scavenging. J Food Hyg Safety, 15, 88-94
  35. Kim SM, Kim EJ, Cho YS, Sung SK (1999) Antioxidant of pine extracts according to preparation method. Korean J Food Sci Technol, 31, 527-534

Cited by

  1. Antioxidant and Tyrosinase Inhibitory Effects of the Extract Mixtures of Perilla frutescens, Houttuynia cordata and Camellia sinensis vol.41, pp.2, 2015, https://doi.org/10.15230/SCSK.2015.41.2.173
  2. Optimization of Extraction Conditions for Useful Components from Sweet Potato Leaves vol.43, pp.11, 2014, https://doi.org/10.3746/jkfn.2014.43.11.1749
  3. A Study on Antioxidant Activity and Antioxidant Compound Content by the Types of Tea vol.31, pp.2, 2016, https://doi.org/10.13103/JFHS.2016.31.2.132