DOI QR코드

DOI QR Code

공진주시험을 통한 Bottom Ash의 특성 연구

A Study on the Bottom Ash Characteristics of Resonant Column Tests

  • 투고 : 2011.05.19
  • 심사 : 2011.06.21
  • 발행 : 2011.06.30

초록

본 연구에서는 표준사와 bottom ash를 No.40체, No.60체, No.100체, No.200체로 분류하여 상대밀도시험을 실시하였으며, 시험결과를 토대로 40%, 55%, 70%의 상대밀도로 공진주시험을 실시하였다. 또한, 각 체에 잔류한 bottom ash에 대해 55%의 상대밀도로 No.200체 통과시료를 함유하여 공진주시험을 실시하였다. 각 체 잔류시료에 대해 A다짐시험에 해당하는 다짐에너지로 다짐을 하면 No.200체 통과율이 약 30%까지 증가하게 되어 함유량을 10%, 20%, 30%로 조정하였다. 시험결과 bottom ash의 경우 파쇄강도와 단위중량이 표준사에 비해 작아 최대전단탄성계수, 감쇠비 등의 결과값이 표준사의 결과에 비해 작았다.

This study investigates relative density test of standard sand and bottom ash which were devided into No.40, No.60, No.100, No.200 and resonant column tests were conducted for samples with the relative density of 40%, 55%, and 70% on the basis of the test results. Resonant column tests were also conducted for each residual bottom ash which contains the passing sample of No.200 with the relative density of 55%. By compressing each residual sample with the compaction energy of A-compact mold test, the passing percentage of No.200 sieve increased up to 30%, which led to the adjustment of relative density to 10%, 20%, and 30%. Test results show that maximum shear modulus and damping ratio of bottom ash are smaller than those of standard sand because crushing strength and unit weight of the former are smaller than those of the latter.

키워드

참고문헌

  1. 산업자원부 (2005), "Bottom Ash를 활용한 Chemical Compaction Pile 제조 및 시공기술 개발".
  2. 산업자원부 (2002), "석탄회를 이용한 환경친화 건자재의 개발".
  3. 추연욱 (1997), "공진주/비틂전단시험을 이용한 사질토의 정규화 전단탄성계수 감소곡선에 관한 연구", 한국과학기술원 토목공학 과 석사학위 논문.
  4. 환경부 (2008), "제 4차 자원재활용 기본계획", pp.100-102.
  5. 한국지진공학회, 한국건설기술연구원 (1997), "내진설계기준 연구(II)", 건설교통부, pp.29-41.
  6. Hardin, B.O., Drnevich, V.P. (1972), "Shear Modulus and Damping in Soils : Measurement and Parameter Effects", Journal of the Soil Mechanics and Foundations Division, ASCE, 98, July, pp.603-624.
  7. Hardin, B.O., Drnevich, V.P. (1972), "Shear Modulus and Damping in Soils : Design Equation and Curves", Journal of the Soil Mechanics and Foundations Division, ASCE, 98, July, pp.667-692.
  8. Iwasaki, T., Tatsuoka, F., Takagi, Y. (1976), "Dynamic Shear Damping Properties of Sand for Wide Strain Range", Report of Civil Engineering Institute, 1085, Ministry of Construction, Tokyo, Japan.25.
  9. Park. D.K. (1998), "Evaluation of Dynamic Soil Properties : Strain Amplitude Effects on Shear Modulus and Damping Ratio", Ph.D. Dissertation, Cornal University.
  10. Seed, H.B., Idriss, I.M. (1970), "Soil Moduli and Damping Factors for Dynamics Response Analysis", Report No.EERC 70-10, Earthquake Engineering Research Center, Univ. of California, Berkeley, Sept., pp.37
  11. Seed, H.B., Wang, R.T., Idriss, I.M., Tokmatsu (1984), "Moduli and Damping Factors for Dynamic Analysis of Cohesionless Soils", Earthquake Engineering Research Center, Report No. UCB/EERC- 84/14, University of California, Berkely.
  12. Sweeny, L.R., Rivard-Lentz, D.J., Demars, K.R. (1996), "Physical Chemical Beavior of Incinerator Bottom Ash", Proceedings of the 3rd International Symposium on Environmental Geotechnology, San Diego, California, USA, 1, pp.416-425.