DOI QR코드

DOI QR Code

Characteristics of Cosmetic with Whitening Compounds from Phellodendron amurense

Phellodendron amurense의 미백물질을 이용한 화장품 특성

  • Cho, Young-Je (School of Food Science & Biotechnology, Food & Bio-Industry Research Institute, Kyungpook National University)
  • 조영제 (경북대학교 식품공학부, 식품생물산업연구소)
  • Received : 2011.01.28
  • Accepted : 2011.05.13
  • Published : 2011.06.30

Abstract

The tyrosinase inhibitory activity of extracts from Phellodendron amurense was examined. Tyrosinase inhibitory activity of 60% ethanol extracts was determined as 25% and the inhibitory activity of 60% ethanol extracts against melanin biosynthesis in melanoma cell (B16F10) was 31.2%. The purified inhibitory compounds against tyrosinase by Sephadex LH-20, MCI-gel CHP-20 column chromatography from P. amurense was confirmed as obacunone by $^1H$-NMR, $^{13}C$-NMR and Fast atom bombardment (FAB)-Mass spectrum. The tyrosinase inhibitory activities of purified obacunone was respectively as 35.1%. The safety of essence with tyrosinase inhibitory compounds from P. amurense was also assayed by various safety profiles. First, pH and viscosity change of essence for 60 days were not detected. The essence also showed the stability against temperature and light for 60 days. All these findings suggest that extracts from P. amurense has a great potential as a cosmeceutical ingredient, which has a potent whitening effect.

황백 추출물의 tyrosinase 억제효과를 검토한 결과 60% 에탄올추출물에서 25% 정도의 억제효과를 나타내었으며, melanoma세포(B16F10)에서의 멜라닌 생합성을 측정한 결과 31.2%의 저해활성을 나타내어 멜라닌생성억제효과가 있음을 알 수 있었다. 황백추출물에서 tyrosinase저해 활성물질을 정제하고자 Sephadex LH-20과 MCI-gel CHP-20 open column을 이용하여 용출한 결과 순수하게 정제된 활성물질을 얻을 수 있었으며, 정제물질을 구조 동정한 결과 미백물질은 obacunone으로 동정되었다. 정제된 obacunone은 35.1%의 저해활성을 나타내어 미백 활성이 비교적 우수함을 확인할 수 있었으며, 황백추출물로부터 분리한 미백물질을 이용한 미백 화장품을 제조하여 관능평가를 한 결과 우수한 평가를 받았다. 미백화장품의 안정성 검사를 위해 pH, 점도 및 복소탄성률의 변화를 측정하였으나 저장기간 60일 동안 큰 변화를 나타내지 않았다. 또한 온도변화, 인공 및 자연광에 의한 변화, 온도순환에 의한 변화 및 냉 해동순환(Freeze & Thaw cycling)에 따른 변화들 살펴본 결과 저장 60일 동안 모든 조건에서 상의 분리와 변색, 변취 등의 변화 없이 안정성을 나타내었다.

Keywords

References

  1. Bernstein EF, Chen YQ, Tamai K, Shepley KJ, Resnik KS, Zhang H, Tuan R, Mauviel A, and Uitto J (1994) Enhanced elastin and fibrillin gene expression in chronically photodamaged skin. J Invest Dermatol 103, 182-186. https://doi.org/10.1111/1523-1747.ep12392693
  2. Cho YH, Lee BC, Kim JH, Kim JH, Pyo HB, Zhang YH, and Park HD (2005) Effect of Artemisia anomala S. Moore on antioxidant activity and melanogenesis. Kor J Pharmacogn 36, 273-277.
  3. Choi WY, Chun HJ, Lee JH, and Baek SH (2003) Effect of methanol extract from Cornis fructus on melanogenesis. Kor J Pharmacogn 34, 70-74.
  4. Chun HJ, Choi WH, Baek SH, and Woo WH (2002) Effect of Quercetin on melanogenesis in a melanocyte cells. Kor J Pharmacogn 33, 245-251.
  5. Folin O and Denis W (1912) On phosphotungasticphosphomolybetic compounds as color reagents. J Biol Chem 12, 239-249.
  6. Gilchrest BA (1990) Skin aging and photoaging. Dermatol Nurs 2, 79-82.
  7. Hearing VJ and Jimenez M (1987) Mammalian tyrosinase the critical regulatory control point in melanocyte pigmentation. Int J Biochem 19, 1141-1146. https://doi.org/10.1016/0020-711X(87)90095-4
  8. Hiroyaki K, Yoshiaki T, Takuji T, Shiro H, Mikio T, Masaki M, and Keiji W (2000) Citrus limonoids abacunone and limonin inhibit azoxymethane-induced colon carcinogenesis in rats. Bio Factors 13, 213-218.
  9. Hosoi J, Abe E, Suda T, and Kuroki T (1985) Regulation of melanin synthesis of B16 mouse melanoma cells by 1-alpha, 25-dihydroxyvitamin D3 and retinoic acid. Cancer Res 45, 1474-1478.
  10. Hwang EY and Choi SY (2006) Quantitative analysis of phenolic compounds in different parts of Panax ginseng C. A. Meyer and its inhibitory effect on melanin biosynthesis. Kor J Medicinal Crop Sci 14, 148-152.
  11. Jung SW, Lee NK, Kim SJ, and Han DS (1995) Screening of tyrosinase inhibitor from plants. Kor J Food Sci Technol 27, 891-896.
  12. Kligman D (2000) Cosmeceuticals. Dermatol Clin 18, 609-615. https://doi.org/10.1016/S0733-8635(05)70211-4
  13. Ko JS (2000) In Dermatology, 73, Soomoonsa Press, Seoul, Korea.
  14. Kwak JH, Kim YH, Chang HR, Choi BW, Park CW, and Han YH (2004) Inhibitory effect of gardenia fruit extracts on tyrosinase activity and melanogenesis. Kor J Biotechnol Bioeng 19, 437-440.
  15. Kwak JH, Seo UK, and Han YH (2001) Inhibitory effect of Mugwork extracts on tyrosinase activity. Kor J Biotechnol Bioeng 16, 220-223.
  16. Lee NH, Yang HC, Bu HJ, Jung DS, Lee SJ, and Riu KZ (2001) Screening of the tyrosinase inhibition and hyaluronidase inhibition activities and radical scavenging effects using plants in Cheju. Kor J Pharmacogn 32, 175-180.
  17. Mauviel A, Halcin C, Vasiloudes P, Parks WC, Kurkinen M, and Uitto J (1994) Uncoordinate regulation of collagenase, stromelysin, and tissue inhibitor of metalloproteinases genes by prostaglandin E2: Selective enhancement of collagenase gene expression in human dermal fibroblasts in culture. J cell Biochem 54, 465-472. https://doi.org/10.1002/jcb.240540413
  18. Park SK, Kim SN, Lee JC, Kim HS, Kim YJ, Lee BG, and Chang IS (2004) Anti-aging effect on skin with Jaeum-Dan (JED). Kor J Herb 19, 67-76.
  19. Pavel S and Muskiet FA (1983) Eumelanin(precursor) metabolites as markers for pigmented malignant melanoma, a preliminary report. Cancer Detect Prev 6, 311-316.
  20. Pentland AP, Shapiro SD, and Welgus HG (1995) Agonist-induced expression of tissue inhibitor of metalloproteinases and metalloproteinases by human macrophages is regulated by endogenous prostaglandin E2 synthesis. J Invest Dermatol 104, 52-57. https://doi.org/10.1111/1523-1747.ep12613488
  21. Prota G (1980) Recent advances in the chemistry of melanogenesis in mammals. J Invest Dermatol 75, 122-127. https://doi.org/10.1111/1523-1747.ep12521344
  22. Tohru S, Toshio M, Masanori K, and Akira V (1988) Limonoids and quinolone alkaloids from Evodiarutaecarpa bentham. Chem Pharm Bull 36, 4453-4461. https://doi.org/10.1248/cpb.36.4453
  23. Yagi A, Kanbara T, and Morinobu N (1986) The effect of tyrosinase inhibition for aloe. Planta Medica 3981, 517-519.

Cited by

  1. Effects of Paeoniae radix alba(PRA) on Skin whitening and Elasticity using Melanoma cells vol.25, pp.1, 2012, https://doi.org/10.6114/jkood.2012.25.1.001
  2. Screening of Biological Activity of Solvent Extract from Styela clava Tunic for Fishery Waste Recycling vol.23, pp.1, 2014, https://doi.org/10.5322/JESI.2014.23.1.89
  3. Cosmetic Activities of Nyasol from the Rhizomes of Anemarrhena asphodeloide vol.58, pp.1, 2015, https://doi.org/10.3839/jabc.2015.007
  4. Beauty Food Activities of Isolated Phenolic Compounds from Tetragonia tetragonioides vol.45, pp.3, 2016, https://doi.org/10.3746/jkfn.2016.45.3.333
  5. 유근피(Ulmus pumila)로부터 분리한 페놀성물질의 미용식품활성 vol.55, pp.4, 2011, https://doi.org/10.3839/jabc.2012.033
  6. 하고초(Prunella vulgaris) 추출물의 생리활성 vol.20, pp.2, 2013, https://doi.org/10.11002/kjfp.2013.20.2.234
  7. 수용성 누에 실샘 가수분해물의 미백 및 항노화 효과 vol.28, pp.3, 2011, https://doi.org/10.7841/ksbbj.2013.28.3.196
  8. 초미세 분쇄한 삼백초(Saurus chinensis) 추출물의 미용 활성 vol.23, pp.6, 2011, https://doi.org/10.11002/kjfp.2016.23.6.899
  9. A Review of Current Research on Natural Skin Whitening Products vol.16, pp.4, 2011, https://doi.org/10.20402/ajbc.2018.0243
  10. 지모 추출물의 피부 미백 및 항산화 효과 연구 vol.34, pp.2, 2011, https://doi.org/10.15188/kjopp.2020.04.34.2.67
  11. Induction and Proliferation of Callus in the Flower Stalk of Calanthe discolor Lindl. and its Antioxidant Properties vol.19, pp.3, 2021, https://doi.org/10.20402/ajbc.2021.0196
  12. Investigation of Antimicrobial Activity of Rutaceae Fruit Ethanol Extracts Against Microorganisms-induced Skin Inflammation vol.26, pp.12, 2011, https://doi.org/10.9708/jksci.2021.26.12.237
  13. Investigation of Antimicrobial Activity of Rutaceae Fruit Ethanol Extracts Against Microorganisms-induced Skin Inflammation vol.26, pp.12, 2011, https://doi.org/10.9708/jksci.2021.26.12.237