DOI QR코드

DOI QR Code

Evaluation of the Neural Fiber Tractography Associated with Aging in the Normal Corpus Callosum Using the Diffusion Tensor Imaging (DTI)

확산텐서영상(Diffusion Tensor Imaging)을 이용한 정상 뇌량에서의 연령대별 신경섬유로의 변화

  • Im, In-Chul (Department of Radiological Science, Dongeui University) ;
  • Goo, Eun-Hoe (Department of Radiology, Seoul National University Hospital) ;
  • Lee, Jae-Seung (Department of Physics, Soonchunhyang University)
  • 임인철 (동의대학교 방사선학과) ;
  • 구은회 (서울대학교병원 영상의학과) ;
  • 이재승 (순천향대학교 물리학과)
  • Received : 2011.04.17
  • Accepted : 2011.08.22
  • Published : 2011.08.30

Abstract

This study used magnetic resonance diffusion tensor imaging (DTI) to quantitatively analyze the neural fiber tractography according to the age of normal corpus callosum and to evaluate of usefulness. The research was intended for the applicants of 60 persons that was in a good state of health with not brain or other disease. The test parameters were TR: 6650 ms, TE: 66 ms, FA: $90^{\circ}$, NEX: 2, thickness: 2 mm, no gap, FOV: 220 mm, b-value: $800s/mm^2$, sense factor: 2, acquisition matrix size: $2{\times}2{\times}2mm^3$, and the test time was 3 minutes 46 seconds. The evaluation method was constructed the color-cored FA map include to the skull vertex from the skull base in scan range. We set up the five ROI of corpus callosum of genu, anterior-mid body, posterior-mid body, isthmus, and splenium, tracking, respectively, and to quantitatively measured the length of neural fiber. As a result, the length of neural fiber, for the corpus callosum of genu was 20's: $61.8{\pm}6.8$, 30's: $63.9{\pm}3.8$, 40's: $65.5{\pm}6.4$, 50's: $57.8{\pm}6.0$, 60's: $58.9{\pm}4.5$, more than 70's: $54.1{\pm}8.1mm$, for the anterior-mid body was 20's: $54.8{\pm}8.8$, 30's: $58.5{\pm}7.9$, 40's: $54.8{\pm}7.8$, 50's: $56.1{\pm}10.2$, 60's: $48.5{\pm}6.2$, more than 70's: $48.6{\pm}8.3mm$, for the posterior-mid body was 20's: $72.7{\pm}9.1$, 30's: $61.6{\pm}9.1$, 40's: $60.9{\pm}10.5$, 50's: $61.4{\pm}11.7$, 60's: $54.9{\pm}10.0$, more than 70's: $53.1{\pm}10.5mm$, for the isthmus was 20's: $71.5{\pm}17.4$, 30's: $74.1{\pm}14.9$, 40's: $73.6{\pm}14.2$, 50's: $66.3{\pm}12.9$, 60's: $56.5{\pm}11.2$, more than 70's: $56.8{\pm}11.3mm$, and for the splenium was 20's: $82.6{\pm}6.8$, 30's: $86.9{\pm}6.4$, 40's: $83.1{\pm}7.1$, 50's: $81.5{\pm}7.4$, 60's: $78.6{\pm}6.0$, more than 70's: $80.55{\pm}8.6mm$. The length of neural fiber for normal corpus callosum were statistically significant in the genu(P=0.001), posterior-mid body(P=0.009), and istumus(P=0.012) of corpus callosum. In order of age, the length of neural fiber increased from 30s to 40s, as one grows older tended to decrease. For this reason, the nerve cells of brain could be confirmed through the neural fiber tractography to progress actively in middle age.

본 연구는 자기공명 확산텐서영상(DTI)을 이용하여 연령대에 따른 정상 뇌량의 신경섬유로 영상을 정량적으로 분석하여 유용성을 평가하고자 하였다. 뇌질환이나 다른 질병이 없는 건강한 지원자 60명을 대상으로 시행하였다. 검사방법은 TR: 6650 ms, TE: 66 ms, FA: $90^{\circ}$, NEX: 2, thickness: 2 mm, no gap, FOV: 220 mm, b-value: $800s/mm^2$, sense factor: 2, acquisition matrix size: $2{\times}2{\times}2mm^3$로 하였고, 검사시간은 3분 46초이었다. 평가방법은 영상범위를 두개저부에서 두정부까지 포함하여 color-cored FA map을 만든 후 뇌량의 슬부, 전체부, 후체부, 이행부, 그리고 팽대부 등 5개의 부위에 관심영역을 설정하고 각각 트래킹을 하여 신경섬유로의 길이를 정량적으로 측정하였다. 측정 결과 뇌량의 슬부에 대한 신경섬유로 길이는 20대: $61.8{\pm}6.8$, 30대: $63.9{\pm}3.8$, 40대: $65.5{\pm}6.4$, 50대: $57.8{\pm}6.0$, 60대: $58.9{\pm}4.5$, 70대 이상: $54.1{\pm}8.1mm$, 전체부에서는 20대: $54.8{\pm}8.8$, 30대: $58.5{\pm}7.9$, 40대: $54.8{\pm}7.8$, 50대: $56.1{\pm}10.2$, 60대: $48.5{\pm}6.2$, 70대 이상: $48.6{\pm}8.3mm$, 후체부에서는 20대: $72.7{\pm}9.1$, 30대: $61.6{\pm}9.1$, 40대: $60.9{\pm}10.5$, 50대: $61.4{\pm}11.7$, 60대: $54.9{\pm}10.0$, 70대 이상: $53.1{\pm}10.5mm$, 이행부에서는 20대: $71.5{\pm}17.4$, 30대: $74.1{\pm}14.9$, 40대: $73.6{\pm}14.2$, 50대: $66.3{\pm}12.9$, 60대: $56.5{\pm}11.2$, 70대 이상: $56.8{\pm}11.3mm$, 그리고 팽대부에서는 20대: $82.6{\pm}6.8$, 30대: $86.9{\pm}6.4$, 40대: $83.1{\pm}7.1$, 50대: $81.5{\pm}7.4$, 60대: $78.6{\pm}6.0$, 70대 이상: $80.55{\pm}8.6mm$ 이었다. 정상 뇌량에 대한 신경섬유로의 길이는 슬부(P=0.001)와 후체부(P=0.009), 그리고 이행부(P=0.012)에서 통계적으로 유의한 차이가 있었으며, 연령대로는 30대와 40대까지 증가하다가 연령대가 높아질수록 감소하는 경향을 보였다. 이는 뇌의 신경세포들이 중년의 나이에서 활발히 발달하고 있음을 신경 섬유로 영상을 통해 확인할 수 있었다.

Keywords

References

  1. American Psychiatric Association, "Diagnostic and Statistical Manual of Mental Disorders", 4th ed.(DSM-IV), Washington DC, American Psychiatric Association, 1994.
  2. J. L. Cummings, D. J. Demential, "A clinical approach", 2nd ed., Butterworth-Heinerworth, 1992.
  3. J. C. Morris, "Mild cognitive impairment and preclinical Alzheimer's disease", Geriatrics, Vol.60, pp.9-14, 2005
  4. B. Winblad, K. Palmer, M. Kivipelto, V. Jelic, L. Fratiglioni, L. O. Wahlund, A. Nordberg, L. Backman, M. Albert, O. Almkvist, H. Arai, H. Basun, K. Blennow, M. de Leon, C. DeCarli, T. Erkinjuntti, E. Giacobini, C. Graff, J. Hardy, C. Jack, A. Jorm, K. Ritchie, C. van Duijn, P. Visser, R. C. Petersen, "Mild cognitive impairment-Beyond controversies, towards a consensus: report of the International Waorking Group on Mild Cognitive Impairment", J. Intern. Med., Vol.256, No.3, pp.240-246, 2004. https://doi.org/10.1111/j.1365-2796.2004.01380.x
  5. P. J. Basser, C. Pierpaoli, "Microstructural and physiological features of tissues elucidated by quantitative diffusion tensor MRI", J. Magn. Resom. B., Vol.111, No.3, pp.209-219, 1996. https://doi.org/10.1006/jmrb.1996.0086
  6. H. Mamata, Y. Mamata, C. F. Westin, M. E. Shenton, R. Kikinis, F. A. Jolesz, S. E. Maier, "High-resolution line scan diffusion tensor MR imaging of mater fiber tract anatomy", Am. J. Neuroradiol., Vol.23, No.1, PP.67-75, 2002.
  7. E. R. Melhem, S. Mori, G. Mukundan, M. A. Kraut, M. G. Pomper, P. C. van Zill, "Diffusion tensor MR imaging of the brain and white matter tractography", Am. J. Roentgenol., Vol.178, No.1, pp.3-16, 2002. https://doi.org/10.2214/ajr.178.1.1780003
  8. F. X. Castellanos, R. Tannock, "Neuroscience of attention-deficit/ hyperactivity disorder: the search for endophenotypes", Nat. Rev. Neurosci., Vol.3, No.8, pp.617-628, 2002. https://doi.org/10.1038/nrn896
  9. S. Wakana, H. Jiang, L. M. Nagae-Poetscher, P. C. van Zijl, S. Mori, "Fiber tract-based atlas of human white matter anatomy", Radiology, Vol.230, No.1, pp.77-87, 2004. https://doi.org/10.1148/radiol.2301021640
  10. K. Yamada, O. Kizu, S. Mori, H. Ito, H. Nakamura, S. Yuen, T. Kubota, O. Tanaka, W. Akada, H. Sasajima, K. Mineura, T. Nishimura, "Brain fiber tracking with clinically feasible diffusion-tensor MR imaging: initial experience" Radiology, Vol.227, No.1, pp.295-301, 2003. https://doi.org/10.1148/radiol.2271020313
  11. Y. H. Seoung, H. G. Kim, S. W. Hong, J. D. Hong, J. D. Rhim, J. W. Min, M. H. Yoon, B. Y. Choe, "Evaluation of a Fractional Anisotropy Measurement of the Corpus Callosum in the Normal Adult Brain by Using Diffusion Tensor MRI", J. Korea Phys. Soc., Vol.55, No.4, pp.1657-1665, 2009. https://doi.org/10.3938/jkps.55.1657
  12. S. E. Rose, F. Chen, J. B. Chalk, F. O. Zelaya, W. E. Strugnell, M. Benson, J. Semple, D. M. Doddrell, "Loss of connectivity in Alzheimer's disease: an evaluation of white matter tract integrity with colour coded MR diffusion tensor imaging.", J. Neurol. Neurosurg. Psychiatry., Vol.69, No.4, pp.528-30, 2000. https://doi.org/10.1136/jnnp.69.4.528
  13. B. Yoon, Y. S. Shim, Y. J. Hong, B. B. Koo, Y. D. Kim, K. O. Lee, D. W. Yang, "Comparison of diffusion tensor imaging and voxel-based morphometry to detect white matter damage in Alzheimer's disease.", J. Neurol. Sci., Vol.15, No.1, pp.89-95, 2011.

Cited by

  1. A Study of Whiter Matter Fiber Tractography in Young Internet Addiction Disorder using a Brain Diffusion Tensor Magnetic Resonance Imaging vol.10, pp.1, 2016, https://doi.org/10.7742/jksr.2016.10.1.7