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EXISTENCE AND ITERATIVE APPROXIMATIONS OF

SOLUTIONS FOR STRONGLY NONLINEAR

VARIATIONAL-LIKE INEQUALITIES

Jinsong Li, Juhe Sun, and Shin Min Kang∗

Abstract. In this paper, we introduce and study a new class of strongly

nonlinear variational-like inequalities. Under suitable conditions, we prove
the existence of solutions for the class of strongly nonlinear variational-

like inequalities. By making use of the auxiliary principle technique, we

suggest an iterative algorithm for the strongly nonlinear variational-like
inequality and give the convergence criteria of the sequences generated

by the iterative algorithm.

1. Introduction

It is well known that there are lots of iterative type algorithms for finding
the approximate solutions of various variational inequalities in Hilbert spaces
[3] and [8-13]. Among the most effective numerical technique is the projection
method and its variant forms. However, the standard projection technique can
no longer be applied to suggest the iterative type algorithm for variational-like
inequalities. This fact motivated Gowinski, Lions and Tremoliers [7] to develop
the auxiliary principle technique, which does not depend on the projection.
Ding [4,5] and Ding and Tan [6] extended the auxiliary principle technique to
suggest several iterative algorithms to compute approximate solutions for some
classes of general nonlinear mixed variational inequalities and variational-like
inequalities.

In this paper, we introduce and study a new class of strongly nonlinear
variational-like inequalities. By applying a result due to Chang [1], we prove
the existence of solutions for the class of strongly nonlinear variational-like
inequalities. Using the auxiliary principle technique, we suggest and analyze
a new three-step iterative algorithm for solving the class of strongly nonlinear
variational-like inequalities. The convergence criteria of the sequence generated
by the iterative algorithm are given.
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2. Preliminaries

Let H be a real Hilbert space endowed with an inner product 〈·, ·〉 and
norm ‖ · ‖, respectively. Let K be a nonempty closed convex subset of H,
A, B, C, F : K → H, N : H ×H ×H → H and η : K ×K → H be mappings.
Suppose that a : H × H → (−∞,∞) is a coercive continuous bilinear form,
that is, there exist positive constants c and d such that

(C1) a(v, v) ≥ c‖v‖2, ∀v ∈ H;
(C2) a(u, v) ≤ d‖u‖‖v‖, ∀u, v ∈ H.
Clearly, c ≤ d.
Assume that b : H × H → (−∞,+∞) is nondifferential and satisfies the

following conditions:
(C3) b is linear in the first argument;
(C4) b is convex in the second argument;
(C5) b is bounded, that is, there exists a constant l > 0 satisfying

|b(u, v)| ≤ l‖u‖‖v‖, ∀u, v ∈ H;

(C6) b(u, v)− b(u,w) ≤ b(u, v − w), ∀u, v, w ∈ H.

Now we consider the following strongly nonlinear variational-like inequality
problem: Find u ∈ K such that

〈N(Au,Bu,Cu) + Fu, η(v, u)〉+ a(u, v − u)

≥ b(u, u)− b(u, v), ∀v ∈ K.
(2.1)

Special Cases

(A) If N(Au,Bu,Cu) = Au − Bu, Fu = 0, a(u, v) = 0 and b(u, v) = f(v)
for all u, v ∈ K, then the strongly nonlinear variational-like inequality (2.1) is
equivalent to finding u ∈ K such that

〈Au−Bu, η(v, u)〉 ≥ f(u)− f(v), ∀v ∈ K, (2.2)

which was introduced and studied by Ding [4].
(B) If N(Au,Bu,Cu) = Au − Bu, Fu = 0, a(u, v) = 0, η(u, v) = gu − gv

and b(u, v) = f(v) for all u, v ∈ K, then the strongly nonlinear variational-like
inequality (2.1) is equivalent to finding u ∈ K such that

〈Au−Bu, gv − gu〉 ≥ f(u)− f(v), ∀v ∈ K, (2.3)

which was studied by Yao [13].

Remark 2.1. For suitable and appropriate choices of the mappings a, b, A, B, C,
F, N and the nonempty closed convex subset K, one can obtain a number of
new and previously known nonlinear variational and variational-like inequali-
ties as special cases of the strongly nonlinear variational-like inequality (2.1).

Definition 2.1. Let A, B, C : K → H, N : H×H×H → H and η : K×K →
H be mappings.
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(1) A is said to be Lipschitz continuous with constant α if there exists a
constant α > 0 such that

‖Au−Av‖ ≤ α‖u− v‖, ∀u, v ∈ K;

(2) N is said to be Lipschitz continuous with constant β in the third argu-
ment if there exists a constant β > 0 such that

‖N(w, z, u)−N(w, z, v)‖ ≤ β‖u− v‖, ∀u, v, w, z ∈ H;

(3) A is said to be strongly monotone with constant γ if there exists a
constant γ > 0 such that

〈Au−Av, u− v〉 ≥ γ‖u− v‖2, ∀u, v ∈ K;

(4) N is said to be η-strongly monotone with constant ξ with respect to A
in the first argument if there exists a constant ξ > 0 such that

〈N(Au,w, z)−N(Av,w, z), η(u, v)〉 ≥ ξ‖u− v‖2, ∀u, v ∈ K, w, z ∈ H;

(5) N is said to be η-relaxed monotone with constant ξ with respect to A in
the second argument if there exists a constant ζ > 0 such that

〈N(Au,w, z)−N(Av,w, z), η(u, v)〉 ≥ −ζ‖u− v‖2, ∀u, v ∈ K, w, z ∈ H;

(6) N is said to be η-monotone with respect to A in the second argument if

〈N(Au,w, z)−N(Av,w, z), η(u, v)〉 ≥ 0, ∀u, v ∈ K, w, z ∈ H;

(7) η is said to be Lipschitz continuous with constant δ if there exists a
constant δ > 0 such that

‖η(u, v)‖ ≤ δ‖u− v‖, ∀u, v ∈ K;

(8) η is said to be strongly monotone with constant ω if there exists a constant
ω > 0 such that

〈u− v, η(u, v)〉 ≥ ω‖u− v‖2, ∀u, v ∈ K.

(9) the mapping N(A,B,C) : K → H is said to be η-hemicontinuous on K,
if for all u, v ∈ K, the function t 7→ 〈N(A(u+ t(v− u)), B(u+ t(v− u)), C(u+
t(v − u))), η(v, u)〉 is continuous on [0, 1].

Lemma 2.1. ([1,2]) Let X be a nonempty closed convex subset of a Hausdorff
linear topological space E and φ, ψ : X × X → R be mappings satisfying the
following conditions:

(a) ψ(x, y) ≤ φ(x, y), ∀x, y ∈ X, and ψ(x, x) ≥ 0, ∀x ∈ X;
(b) for each x ∈ X, φ(x, ·) is upper semicontinuous on X;
(c) for each y ∈ X, the set {x ∈ X : ψ(x, y) < 0} is a convex set;
(d) there exists a nonempty compact set K ⊂ X and x0 ∈ K such that

ψ(x0, y) < 0, ∀y ∈ X \K.
Then there exists ŷ ∈ K such that φ(x, ŷ) ≥ 0, ∀x ∈ X.
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3. Existence theorems

In this section, we establish two existence theorems of solutions for the
strongly nonlinear variational-like inequality (2.1).

Theorem 3.1. Suppose that a : H ×H → (−∞,∞) is a coercive continuous
bilinear form with (C1) and (C2), b : H × H → (−∞,∞) satisfies (C3)-(C6)
and A,B,C, F : K → H and N : H × H × H → H are mappings. Let
η : K×K → H be Lipschitz continuous with constant δ and strongly monotone
with constant ω, for each v ∈ K, η(·, v) be continuous and η(v, u) = −η(u, v)
for all u, v ∈ K. Assume that the mapping N(A,B,C) is η-hemicontinuous on
K, N is η-strongly monotone with constant α with respect to A in the first
argument, η-monotone with respect to B in the second argument and η-relaxed
monotone with constant β with respect to C in the third argument. Suppose
that F is bounded and completely continuous and for given x, y, z ∈ H and
w, v ∈ K, the mapping u 7→ 〈N(x, y, z) + Fw, η(v, u)〉 is concave and upper
semicontinuous on K. If c+α > β+ l, then the strongly nonlinear variational-
like inequality (2.1) has a solution u in K.

Proof. We first prove that for each fixed û ∈ K, there exists a ŵ ∈ K such that

〈N(Aŵ,Bŵ, Cŵ) + Fû, η(v, ŵ)〉+ a(ŵ, v − ŵ)

≥ b(ŵ, ŵ)− b(ŵ, v), ∀v ∈ K.
(3.1)

Define the functionals φ and ψ : K ×K → R by

φ(v, w) = 〈N(Av,Bv,Cv) + Fû, η(v, w)〉
+ a(v, v − w) + b(v, v)− b(v, w)

and
ψ(v, w) = 〈N(Aw,Bw,Cw) + Fû, η(v, w)〉

+ a(w, v − w) + b(w, v)− b(w,w)

for all v, w ∈ K. We check that the functionals φ and ψ satisfy all the conditions
of Lemma 2.1 in the weak topology. It is easy to see for all v, w ∈ K,

φ(v, w)− ψ(v, w)

≥ 〈N(Av,Bv,Cv)−N(Aw,Bv,Cv), η(v, w)〉
+ 〈N(Aw,Bv,Cv)−N(Aw,Bw,Cv), η(v, w)〉
+ 〈N(Aw,Bw,Cv)−N(Aw,Bw,Cw), η(v, w)〉
+ a(v − w, v − w)− b(v − w,w − v)

≥ (c+ α− β − l)‖v − w‖2 ≥ 0,

which yields that φ and ψ satisfy the condition (a) of Lemma 2.1. Note that b
is convex and lower semicontinuous with respect to the second argument and
for given x, y, z ∈ H, w, v ∈ K, the mapping u 7→ 〈N(x, y, z) + Fw, η(v, u)〉
is concave and upper semicontinuous. It follows that φ(v, w) is weakly upper
semicontinuous with respect to w and the set {v ∈ K : ψ(v, w) < 0} is convex
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for each w ∈ K. Therefore the conditions (b) and (c) of Lemma 2.1 hold. Let
v∗ be in K. Put

D = (c+ α− β − l)−1[δ‖N(Av∗, Bv∗, Cv∗) + Fû‖+ (d+ l)‖v∗‖]
and

T = {w ∈ K : ‖w − v∗‖ ≤ D}.
Clearly, T is a weakly compact subset of K and for any w ∈ K \ T

ψ(v∗, w) = −〈N(Aw,Bw,Cw)−N(Av∗, Bw,Cw), η(w, v∗)〉
− 〈N(Av∗, Bw,Cw)−N(Av∗, Bv∗, Cw), η(w, v∗)〉
− 〈N(Av∗, Bv∗, Cw)−N(Av∗, Bv∗, Cv∗), η(w, v∗)〉
− 〈N(Av∗, Bv∗, Cv∗) + Fû, η(w, v∗)〉
− a(v∗ − w, v∗ − w) + a(v∗, v∗ − w) + b(w, v∗)− b(w,w)

≤ −‖w − v∗‖[(c+ α− β − l)‖w − v∗‖
− δ‖N(Av∗, Bv∗, Cv∗) + Fû‖ − (d+ l)‖v∗‖] < 0,

which means that the condition (d) of Lemma 2.1 holds. Thus Lemma 2.1
ensures that there exists a ŵ ∈ K such that φ(v, ŵ) ≥ 0 for all v ∈ K, that is,

〈N(Av,Bv,Cv) + Fû, η(v, ŵ)〉+ a(v, v − ŵ)

≥ b(v, v)− b(v, ŵ), v ∈ K.
(3.2)

Let t be in (0, 1] and v be in K. Replacing v by vt = tv + (1− t)ŵ in (3.2), we
know that

〈N(Avt, Bvt, Cvt) + Fû, η(vt, ŵ)〉+ a(vt, vt − ŵ)

≥ b(vt, vt)− b(vt, ŵ).
(3.3)

Notice that b is convex with respect to the second argument. From (3.3) we
deduce that

〈N(Avt, Bvt, Cvt) + Fû, η(v, ŵ)〉+ a(vt, v − ŵ)

≥ b(vt, v)− b(vt, ŵ), ∀v ∈ K.

Letting t→ 0+ in the above inequality, we conclude that

〈N(Aŵ,Bŵ, Cŵ) + Fû, η(v, ŵ)〉+ a(ŵ, v − ŵ)

≥ b(ŵ, ŵ)− b(ŵ, v), ∀v ∈ K.
That is, ŵ is a solution of (3.1).

Now we prove that for each fixed û ∈ K, there exists a unique ŵ ∈ K such
that (3.1). Let w1, w2 ∈ K be two solutions of (3.1) for fixed û ∈ K, we know
that

〈N(Aw1, Bw1, Cw1) + Fû, η(v, w1)〉+ ρa(w1, v − w1)

≥ b(w1, v)− b(w1, w1)
(3.4)

and
〈N(Aw2, Bw2, Cw2) + Fû, η(v, w2)〉+ a(w2, v − w2)

≥ b(w2, v)− b(w2, w2)
(3.5)
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for all v ∈ K. Taking v = w2 in (3.4) and v = w1 in (3.5), we get that

〈N(Aw1, Bw1, Cw1) + Fû, η(w2, w1)〉+ a(w1, w2 − w1)

≥ b(w1, w2)− b(w1, w1)

and
〈N(Aw2, Bw2, Cw2) + Fû, η(w1, w2)〉+ a(w2, w1 − w2)

≥ b(w2, w1)− b(w2, w2).

Adding these inequalities, we deduce that

(c+ α− β − l)‖w1 − w2‖2

≤ 〈N(Aw1, Bw1, Cw1)−N(Aw2, Bw1, Cw1), η(w1, w2)〉
+ 〈N(Aw2, Bw1, Cw1)−N(Aw2, Bw2, Cw1), η(w1, w2)〉
+ 〈N(Aw2, Bw2, Cw1)−N(Aw2, Bw2, Cw2), η(w1, w2)〉
+ a(w1 − w2, w1 − w2)− b(w1 − w2, w2 − w1) ≤ 0,

which yields that w1 = w2. That is, ŵ is the unique solution of (3.1). This
means that there exists a mapping G : K → K satisfying G(û) = ŵ, where ŵ
is the unique solution of (3.1) for each û ∈ K.

Next we show that G is bounded and completely continuous. Let u1 and u2
be arbitrary elements in K. Using (3.1), we see that

〈N(A(Gu1), B(Gu1), C(Gu1)) + Fu1, η(v,Gu1)〉+ a(Gu1, v −Gu1)

≥ b(Gu1, v)− b(Gu1, Gu1)
(3.6)

and

〈N(A(Gu2), B(Gu2), C(Gu2)) + Fu2, η(v,Gu2)〉+ a(Gu2, v −Gu2)

≥ b(Gu2, v)− b(Gu2, Gu2)
(3.7)

for all v ∈ K. Letting v = Gu2 in (3.9) and v = Gu1 in (3.10), and adding
these inequalities, we arrive at

0 ≥ 〈N(A(Gu1), B(Gu1), C(Gu1))

−N(A(Gu2), B(Gu1), C(Gu1)), η(Gu1, Gu2)〉
+ 〈N(A(Gu2), B(Gu1), C(Gu1))

−N(A(Gu2), B(Gu2), C(Gu1)), η(Gu1, Gu2)〉
+ 〈N(A(Gu2), B(Gu2), C(Gu1))

−N(A(Gu2), B(Gu2), C(Gu2)), η(Gu1, Gu2)〉
+ 〈Fu1 − Fu2, η(Gu1, Gu2)〉
+ a(Gu1 −Gu2, Gu1 −Gu2) + b(Gu1 −Gu2, Gu2 −Gu1)

≥ (α+ c− β − l)‖Gu1 −Gu2‖2 − δ‖Fu1 − Fu2‖‖Gu1 −Gu2‖,
that is,

‖Gu1 −Gu2‖ ≤
δ

α+ c− β − l
‖Fu1 − Fu2‖. (3.8)
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Since F is bounded and completely continuous, it follows from (3.8) that G :
K → K is also bounded and completely continuous. Hence the Schauder fixed
point theorem guarantees that G has a fixed point u ∈ K, which means that
u is a solution of the strongly nonlinear variational-like inequality (2.1). This
completes the proof. �

Theorem 3.2. Let a, b, A, B, F and η be as in Theorem 3.1 and C : K → H
be Lipschitz continuous with constant γ. Assume that N : H ×H ×H → H is
η-strongly monotone with constant α with respect to A in the first argument, η-
monotone with respect to B in the second argument, Lipschitz continuous with
constant β in the third argument and N(A,B,C) is η-hemicontinuous on K.
Suppose that for given x, y, z ∈ H and w, v ∈ K, the mapping u 7→ 〈N(x, y, z)+
Fw, η(v, u)〉 is concave and upper semicontinuous on K. If c+α > βγδ+l, then
the strongly nonlinear variational-like inequality (2.1) has a solution u ∈ K.

Proof. Put

D = (c+ α− βγδ − l)−1[δ‖N(Av∗, Bv∗, Cv∗) + Fû‖+ (d+ l)‖v∗‖]

and

T = {w ∈ K : ‖w − v∗‖ ≤ D}.
As in the proof of Theorem 3.1, we conclude that

ψ(v∗, w) = −〈N(Aw,Bw,Cw)−N(Av∗, Bw,Cw), η(w, v∗)〉
− 〈N(Av∗, Bw,Cw)−N(Av∗, Bv∗, Cw), η(w, v∗)〉
− 〈N(Av∗, Bv∗, Cw)−N(Av∗, Bv∗, Cv∗), η(w, v∗)〉
− 〈N(Av∗, Bv∗, Cv∗) + Fû, η(w, v∗)〉
− a(v∗ − w, v∗ − w) + a(v∗, v∗ − w) + b(w, v∗)− b(w,w)

≤ −‖w − v∗‖[(c+ α− βγδ − l)‖w − v∗‖
− δ‖N(Av∗, Bv∗, Cv∗) + Fû‖ − (d+ l)‖v∗‖] < 0

for any w ∈ K \ T. The rest of the argument is now essentially the same as in
the proof of Theorem 3.1 and therefore is omitted. �

Theorem 3.3. Let a, b, A, B, C, N and η be as in Theorem 3.1. Suppose that
F : K → H is Lipschitz continuous with constant ξ. If 0 < δξ

α+c−β−l < 1, then

the strongly nonlinear variational-like inequality (2.1) has a unique solution
u ∈ K.

Proof. As in the proof of Theorem 3.1, it follows from (3.8) that

‖Gu1 −Gu2‖ ≤
δ

α+ c− β − l
‖Fu1 − Fu2‖

≤ δξ

α+ c− β − l
‖u1 − u2‖, ∀u1, u2 ∈ K,



592 JINSONG LI, JUHE SUN, AND SHIN MIN KANG

which yields that G : K → K is a contraction mapping and hence it has a
unique fixed point u ∈ K, which is a unique solution of the strongly nonlinear
variational-like inequality (2.1). This completes the proof. �

It follows from the arguments of Theorems 3.1-3.3 that

Theorem 3.4. Let a, b, A, B, C, N and η be as in Theorem 3.2. Suppose that
F : K → H is Lipschitz continuous with constant ξ. If 0 < δξ

α+c−βγδ−l < 1, then

the strongly nonlinear variational-like inequality (2.1) has a unique solution
u ∈ K.

4. Algorithm and convergence theorems

Let’s consider the following auxiliary variational-like inequality problem: For
any given u ∈ K, find w ∈ K such that

〈w, η(v, w)〉 ≥ 〈u, η(v, w)〉 − ρ〈N(Aw,Bw,Cw) + Fu, η(v, w)〉
− ρa(w, v − w)− ρb(w, v) + ρb(w,w), ∀v ∈ K,

(4.1)

where ρ > 0 is a constant. Clearly, w = u is a solution of the auxiliary
variational-like inequality (4.1). Based on this observation, we suggest the
following iterative algorithm.

Algorithm 4.1. For any given u0 ∈ K, compute sequences {un}n≥0, {wn}n≥0
and {zn}n≥0 by the following iterative schemes

〈wn, η(v, wn)〉
≥ (1− αn)〈un, η(v, wn)〉

+ αn〈un − ρN(Awn, Bwn, , Cwn)− ρFun, η(v, wn)〉
− αnρa(wn, v − wn)− αnρb(wn, v) + αnρb(wn, wn) + 〈qn, η(v, wn)〉,

(4.2)

〈zn, η(v, zn)〉
≥ (1− βn)〈un, η(v, zn)〉

+ βn〈wn − ρN(Azn, Bzn, , Czn)− ρFwn, η(v, zn)〉
− αnρa(zn, v − zn)− βnρb(zn, v) + βnρb(zn, zn) + 〈rn, η(v, zn)〉

(4.3)

and

〈un+1, η(v, un+1)〉
≥ (1− γn)〈un, η(v, un+1)〉

+ γn〈zn − ρN(Aun+1, Bun+1, , Cun+1)− ρFzn, η(v, zn)〉
− αnρa(un+1, v − un+1)− γnρb(un+1, v) + γnρb(un+1, un+1)

+ 〈sn, η(v, un+1)〉

(4.4)

for all v ∈ K and n ≥ 0, where {αn}n≥0, {βn}n≥0 and {γn}n≥0 ⊂ [0, 1] satisfy∑∞
n=0 γn =∞, {qn}n≥0, {rn}n≥0 and {sn}n≥0 ⊂ H and ρ > 0 is a constant.
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Theorem 4.1. Let a, b, A, B, C, N, F and η be as in Theorem 3.3. Let F be
strongly monotone with constant ζ and 0 < δξ

α+c−β−l < 1. Assume that

lim
n→∞

‖qn‖ = lim
n→∞

‖rn‖ = lim
n→∞

‖sn‖ = 0 (4.5)

and

inf{αn, βn, γn : n ≥ 0} > 0. (4.6)

If there exists a constant ρ > 0 satisfying

δ − ω
(α+ c− β − l) inf{αn, βn, γn : n ≥ 0}

≤ ρ < 2ζ

ξ2
, (4.7)

then the strongly nonlinear variational-like inequality (2.1) possesses a unique
solution u ∈ K and the iterative sequence {un}n≥0 generated by Algorithm 4.1
converges strongly to u.

Proof. It follows from Theorem 3.3 that the strongly nonlinear variational-like
inequality (2.1) has a unique solution u ∈ K such that

〈u, η(v, u)〉
≥ (1− αn)〈u, η(v, u)〉+ αn〈u− ρN(Au,Bu, , Cu)− ρFu, η(v, u)〉
− αnρa(u, v − u)− αnρb(u, v) + αnρb(u, u),

(4.8)

〈u, η(v, u)〉
≥ (1− βn)〈u, η(v, u)〉+ βn〈u− ρN(Au,Bu, , Cu)− ρFu, η(v, u)〉
− βnρa(u, v − u)− βnρb(u, v) + βnρb(u, u)

(4.9)

and

〈u, η(v, u)〉
≥ (1− γn)〈u, η(v, u)〉+ γn〈u− ρN(Au,Bu, , Cu)− ρFu, η(v, u)〉
− γnρa(u, v − u)− γnρb(u, v) + γnρb(u, u)

(4.10)

for all v ∈ K and n ≥ 0. Taking v = u in (4.2), v = wn in (4.8) and adding
these inequalities, we get that

ω‖wn − u‖2

≤ (1− αn)〈un − u, η(wn, u)〉
− αnρ〈N(Awn, Bwn, Cwn)−N(Au,Bwn, Cwn), η(wn, u)〉
− αnρ〈N(Au,Bwn, Cwn)−N(Au,Bu,Cwn), η(wn, u)〉
− αnρ〈N(Au,Bu,Cwn)−N(Au,Bu,Cu), η(wn, u)〉
+ αn〈un − u− ρ(Fun − Fu), η(wn, u)〉
− αnρa(wn − u,wn − u) + αnρb(wn − u, u− wn) + 〈qn, η(u,wn)〉

≤ δ{1− αn[1−
√

1− 2ρζ + (ρξ)2]}‖un − u‖‖wn − u‖
− ραn(α+ c− β − l)‖wn − u‖2 + δ‖qn‖‖wn − u‖, ∀n ≥ 0,
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that is,
‖wn − u‖ ≤ θ1[1− αn(1− θ2)]‖un − u‖+ θ1‖qn‖

≤ ‖un − u‖+ ‖qn‖, ∀n ≥ 0,
(4.11)

θ1 = δ
ω+ρ(α+c−β−l) inf{αn,βn,γn:n≥0} ≤ 1 and θ2 =

√
1− 2ρζ + (ρξ)2 < 1 by

(4.7). It follows from (4.3), (4.9) and (4.11) that

ω‖zn − u‖2 ≤ δ(1− βn)‖un − u‖‖zn − u‖+ δβnθ2‖wn − u‖‖zn − u‖
− ρα‖zn − u‖2 + δ‖rn‖‖zn − u‖, ∀n ≥ 0,

that is,

‖zn − u‖ ≤ [1− βn(1− θ2)]‖un − u‖+ ‖qn‖+ ‖rn‖, ∀n ≥ 0.

Similarly, we have that

‖un+1 − u‖ ≤ [1− γn(1− θ2)]‖un − u‖+ ‖qn‖+ ‖rn‖+ ‖sn‖

≤
n∏
i=0

[1− γi(1− θ2)]‖u0 − u‖

+

n∑
m=0

n∏
i=m+1

[1− γi(1− θ2)](‖qm‖+ ‖rm‖+ ‖sm‖), ∀n ≥ 0.

It follows from (4.5) and (4.6) that limn→∞ ‖un+1 − u‖ = 0. This completes
the proof. �

Similarly we have the following result.

Theorem 4.2. Let a, b, A, B, C, N, F and η be as in Theorem 3.4. Let F be
strongly monotone with constant ζ and 0 < δξ

α+c−βγδ−l < 1 and (4.5) and (4.6)

hold. If there exists a constant ρ > 0 satisfying

δ − ω
(α+ c− βγδ − l) inf{αn, βn, γn : n ≥ 0}

≤ ρ < 2ζ

ξ2
, (4.12)

then the strongly nonlinear variational-like inequality (2.1) possesses a unique
solution u ∈ K and the iterative sequence {un}n≥0 generated by Algorithm 4.1
converges strongly to u.
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