FILTERS OF MTL-ALGEBRAS BASED ON VAGUE SET THEORY

Young Sik Park and Chul Hwan Park

Abstract

In this paper, we introduce the concept of a vague filter of MTL-algebra, and then some related properties are investigated

1. Introduction

Zadeh[13] introduced the concept of fuzzy set as a new mathematical tool for dealing with uncertainties, several researches were conducted on the generalization of the notion of fuzzy sets. The idea of "vague set" was first published by Gau and Buehrer [3], as a generalization of the notion of fuzzy set. Esteva and Godo[2] introduced a new algebra, called an MTL-algebra, and studied several basic properties. MTL-algebras are algebraic structures for monoidal t-norm based logic (MTL), a many-valued propositional calculus that formalizes the structure of the real interval $[0,1]$, induced by a left-continuous t-norm. They also introduced the notion of filters in MTL-algebras. Zhang [12] studied further properties of filters in MTL-algebras. Using the vague set, Biswas [1] studied vague groups. Jun and Park [6, 8] studied vague ideals and vague deductive systems in subtraction algebras. In this paper, we introduce the notion of vague filters in MTL-algebras, and then some related properties are investigated.

2. Preliminaries

In this section, we collect some definition and results that have been used in the sequel.

Definition 1. ([4]) An algebra $(L, \leq, \wedge, \vee, \odot, \rightarrow, 0,1)$ with four binary operation and two constant is a residuated lattice if it satisfies:
(R1) $(L, \leq, \wedge, \vee, 0,1)$ is a lattice with the least element 0 and the largest element 1 ,
$(\mathrm{R} 2) \odot$ is a commutative semigroup with the unit element 1 ,

Received December 8, 2009; Accepted November 2, 2011.
2000 Mathematics Subject Classification. 03B50, 03B52, 03F55, 06D99.
Key words and phrases. MTL-algebra, vague filter.
(R3) The Galois correspondence holds, that is,

$$
(\forall x, y, z \in L)(x \odot y \leq z \Longleftrightarrow x \leq y \rightarrow z) .
$$

Proposition 2.1. ([10]) Let $(L, \leq, \wedge, \vee, \odot, \rightarrow, 0,1)$ be a residuated lattice. Then the following properties hold:
(a1) $x \leq y \Longleftrightarrow x \rightarrow y=1$,
(a2) $0 \rightarrow x=1,1 \rightarrow x=x, x \rightarrow(y \rightarrow x)=1$,
(a3) $y \leq(y \rightarrow x) \rightarrow x$,
(a4) $x \rightarrow(y \rightarrow z)=(x \odot y) \rightarrow z=y \rightarrow(x \rightarrow z)$,
(a5) $x \rightarrow y \leq(z \rightarrow x) \rightarrow(z \rightarrow y), \quad x \rightarrow y \leq(y \rightarrow z) \rightarrow(x \rightarrow z)$,
(a6) $y \leq x \Rightarrow x \rightarrow z \leq y \rightarrow z, z \rightarrow y \leq z \rightarrow x$,
(a7) $\left(\bigvee_{i \in \Gamma} y_{i}\right) \rightarrow x=\bigwedge_{i \in \Gamma}\left(y_{i} \rightarrow x\right)$.
We define $x^{*}=\bigvee\{y \in L \mid x \odot y=0\}$, equivalently, $x^{*}=x \rightarrow 0$. Then
(a8) $0^{*}=1, \quad 1^{*}=0, \quad x \leq x^{* *}$, and $x^{*}=x^{* * *}$.
Definition 2. ([2]) An MTL-algebra is a residuated lattice $L=(L, \leq, \wedge, \vee$, $\odot, \rightarrow, 0,1)$ satisfying the pre-linearity equation:

$$
(x \rightarrow y) \vee(y \rightarrow x)=1
$$

Proposition 2.2. ([12]) In an MTL-algebra, the following are true :
(a9) $x \rightarrow(y \vee z)=(x \rightarrow y) \vee(x \rightarrow z)$,
(a10) $x \odot y \leq x \wedge y$.
Definition 3. ([2]) Let L be an MTL-algebra. A nonempty subset F of L is called a filter of L if it satisfies
(f1) $(\forall x, y \in F)(x \odot y \in F)$.
(f2) $(\forall x \in F)(\forall y \in L)(x \leq y \Rightarrow y \in F)$.
Proposition 2.3. ([2]) Let L be an MTL-algebra, F is a filter of L. Then
(f3) $(\forall x, y \in F)(x \wedge y \in F)$
Proposition 2.4. ([12]) A nonempty subset F of an MTL-algebra L is a filter of L if and only if it satisfies:
(f4) $1 \in F$.
(f5) $(\forall x \in F)(\forall y \in L)(x \rightarrow y \in F \Rightarrow y \in F)$.
Definition 4. ([1]) A vague set A in the universe of discourse U is characterized by two membership functions given by:
(1) A true membership function

$$
t_{A}: U \rightarrow[0,1]
$$

and
(2) A false membership function

$$
f_{A}: U \rightarrow[0,1]
$$

where $t_{A}(u)$ is a lower bound on the grade of membership of u derived from the "evidence for u ", $f_{A}(u)$ is a lower bound on the negation of u derived from the "evidence against u ", and

$$
t_{A}(u)+f_{A}(u) \leq 1
$$

Thus the grade of membership of u in the vague set A is bounded by a subinterval $\left[t_{A}(u), 1-f_{A}(u)\right]$ of $[0,1]$. This indicates that if the actual grade of membership of u is $\mu(u)$, then

$$
t_{A}(u) \leq \mu(u) \leq 1-f_{A}(u)
$$

The vague set A is written as

$$
A=\left\{\left\langle u,\left[t_{A}(u), f_{A}(u)\right]\right\rangle \mid u \in U\right\}
$$

where the interval $\left[t_{A}(u), 1-f_{A}(u)\right]$ is called the vague value of u in A, denoted by $V_{A}(u)$.

For our discussion, we shall use the following notation.
Notations[1]. (1) If $I_{1}=\left[a_{1}, b_{1}\right]$ and $I_{2}=\left[a_{2}, b_{2}\right]$ are two subintervals of $[0,1]$, we can define a relation between I_{1} and I_{2} by $I_{1} \succeq I_{2}$ if and only if $a_{1} \geq a_{2}$ and $b_{1} \geq b_{2}$.
(2) Let $I[0,1]$ denote the family of all closed subintervals of $[0,1]$. We define the term "imax" to mean the maximum of two intervals as

$$
\operatorname{imax}\left(I_{1}, I_{2}\right):=\left[\max \left(a_{1}, a_{2}\right), \max \left(b_{1}, b_{2}\right)\right]
$$

where $I_{1}=\left[a_{1}, b_{1}\right], I_{2}=\left[a_{2}, b_{2}\right] \in I[0,1]$. Similarly we define "imin". The concepts of "imax" and "imin" could be extended to define "isup" and "iinf" of infinite number of elements of $I[0,1]$.

For $\alpha, \beta \in[0,1]$ we now define (α, β)-cut and α-cut of a vague set.
Definition 5. ([1]) Let A be a vague set of a universe X with the truemembership function t_{A} and the false-membership function f_{A}. The (α, β)-cut of the vague set A is a crisp subset $A_{(\alpha, \beta)}$ of the set X given by

$$
A_{(\alpha, \beta)}=\left\{x \in X \mid V_{A}(x) \succeq[\alpha, \beta]\right\}
$$

Clearly $A_{(0,0)}=X$. The (α, β)-cuts of the vague set A are also called vaguecuts of A.

Definition 6. ([1]) The α-cut of the vague set A is a crisp subset A_{α} of the set X given by $A_{\alpha}=A_{(\alpha, \alpha)}$.

Note that $A_{0}=X$, and if $\alpha \geq \beta$ then $A_{\alpha} \subseteq A_{\beta}$ and $A_{(\alpha, \beta)}=A_{\alpha}$. Equivalently, we can define the α-cut as $A_{\alpha}=\left\{x \in X \mid t_{A}(x) \geq \alpha\right\}$.

3. Vague filters

In what follows let L denote an MTL-algebra unless otherwise specified. We first define the notion of vague filter of MTL-algebra.

Definition 7. A vague set A of L is called a vague filter of L if it satisfies
(vf1) $(\forall x, y \in L)\left(V_{A}(x \odot y) \succeq \operatorname{imin}\left\{V_{A}(x), V_{A}(y)\right\}\right)$,
(vf2) $(\forall x, y \in L)\left(x \leq y \Rightarrow V_{A}(x) \preceq V_{A}(y)\right.$.
that is,

$$
t_{A}(x \odot y) \geq \min \left\{t_{A}(x), t_{A}(y)\right\}, 1-f_{A}(x \odot y) \geq \min \left\{1-f_{A}(x), 1-f_{A}(y)\right\}
$$

and

$$
\begin{aligned}
& x \leq y \Rightarrow t_{A}(x) \leq t_{A}(y) \\
& x \leq y \Rightarrow 1-f_{A}(x) \leq 1-f_{A}(y)
\end{aligned}
$$

for all $x, y \in L$.
We now offer an example of vague filter of L.
Example 8. Let $L=\{0, a, b, 1\}$, where $0<a<b<1$ be aset with the Caley tables:

$$
\begin{array}{c|ccccc|cccc}
\odot & 0 & a & b & 1 \\
\hline 0 & 0 & 0 & 0 & 0 & \rightarrow & 0 & a & b & 1 \\
a & 0 & a & a & a \\
b & 0 & a & a & b & 0 & 1 & 1 & 1 & 1 \\
1 & 0 & a & b & 1 & a & 0 & 1 & 1 & 1 \\
b & 0 & b & 1 & 1 \\
1 & 0 & a & b & 1
\end{array}
$$

Define \vee and \wedge-operation on L as follows:

$$
(\forall x, y \in L)(x \vee y=\max \{x, y\} \text { and } x \wedge y=\min \{x, y\})
$$

Then $L=(L, \leq, \wedge, \vee, \odot, \rightarrow, 0,1)$ is a MTL-algebra.[11] Let A be the vague set in L defined as follows:

$$
A=\{\langle 0,[0.2,0.7]\rangle,\langle a,[0.4,0.5]\rangle,\langle b,[0.4,0.5]\rangle,\langle 1,[0.8,0.1]\rangle\}
$$

It is routine to verify that A is a vague filter of L.
We give characterizations of a vague filter.
Theorem 3.1. A vage set A in L is an vague filter of L if and only if it satisfies
(vf3) $(\forall x \in L)\left(V_{A}(1) \geq V_{A}(x)\right)$,
(vf4) $(\forall x, y \in L)\left(V_{A}(y) \succeq \operatorname{imin}\left\{V_{A}(x), V_{A}(x \rightarrow y)\right\}\right.$.
Proof. Suppose that A is a vague filter of L. Since $x \leq 1$ for all $x \in L$, it follows from (vf2) that $t_{A}(1) \geq t_{A}(x)$ and $1-f_{A}(1) \geq 1-f_{A}(x)$ for all $x \in L$. This prove (vf3) hold. Let $x, y \in L$. Since $x \leq(x \rightarrow y) \rightarrow y$, we have $x \odot(x \rightarrow y) \leq y$ by the Galois correspondence. Hence

$$
\begin{aligned}
& t_{A}(y) \geq t_{A}(x \odot(x \rightarrow y)) \geq \min \left\{t_{A}(x), t_{A}(x \rightarrow y)\right\}, \\
& 1-f_{A}(y) \geq 1-f_{A}(x \odot(x \rightarrow y)) \geq \min \left\{1-f_{A}(x), 1-f_{A}(x \rightarrow y)\right\}
\end{aligned}
$$

by (vf2) and (vf1). This provs (vf4) hold. Conversely,assume that A satisfies conditions (vf3) and (vf4). Using (a4), we can prove $x \rightarrow(y \rightarrow(x \odot y))=$ $(x \odot y) \rightarrow(x \odot y)=1$. So,

$$
\begin{aligned}
t_{A}(x \odot y) & \geq \min \left\{t_{A}(y), t_{A}(y \rightarrow(x \odot y))\right\} \\
& \geq \min \left\{t_{A}(y), \min \left\{t_{A}(x), t_{A}(x \rightarrow(y \rightarrow(x \odot y)))\right\}\right\} \\
& =\min \left\{t_{A}(y), \min \left\{t_{A}(x), t_{A}(1)\right\}\right\} \\
& =\min \left\{t_{A}(x), t_{A}(y)\right\}
\end{aligned}
$$

$1-f_{A}(x \odot y) \geq \min \left\{1-f_{A}(y), 1-f_{A}(y \rightarrow(x \odot y))\right\}$
$\geq \min \left\{1-f_{A}(y), \min \left\{1-f_{A}(x), 1-f_{A}(x \rightarrow(y \rightarrow(x \odot y)))\right\}\right\}$
$=\min \left\{1-f_{A}(y), \min \left\{1-f_{A}(x), 1-f_{A}(1)\right\}\right\}$
$=\min \left\{1-f_{A}(x), 1-f_{A}(y)\right\}$.
by (vf3) and (vf4). This proves (vf1) hold. Let $x, y \in L$ be such that $x \leq y$. Then $x \rightarrow y=1$. Then by (vf3) and (vf4), we get

$$
\begin{gathered}
t_{A}(y) \geq \min \left\{t_{A}(x), t_{A}(x \rightarrow y)\right\}=\min \left\{t_{A}(x), t_{A}(1)\right\}=t_{A}(x) \\
1-f_{A}(y) \geq \min \left\{1-f_{A}(x), 1-f_{A}(x \rightarrow y)\right\}=\min \left\{1-f_{A}(x), 1-f_{A}(1)\right\}=1-f_{A}(x)
\end{gathered}
$$ This proves (vf2) hold.

Theorem 3.2. Let A be a vague filter of L. Then the following are equivalent:
(i) $(\forall x, y, z \in L)\left(V_{A}(x \rightarrow z) \succeq \operatorname{imin}\left\{V_{A}(x \rightarrow(y \rightarrow z)), V_{A}(x \rightarrow y)\right\}\right.$,
(ii) $(\forall x, y \in L)\left(V_{A}(x \rightarrow y) \succeq V_{A}(x \rightarrow(x \rightarrow y))\right.$,
(iii) $(\forall x, y, z \in L)\left(V_{A}((x \rightarrow y) \rightarrow(x \rightarrow z)) \succeq V_{A}(x \rightarrow(y \rightarrow z))\right.$.

Proof. (i) \Rightarrow (ii) Suppose that A satisfies the condition (i). Taking $z=y$ and $y=x$ in (i) and using (vf3), we have

$$
\begin{aligned}
t_{A}(x \rightarrow y) & \geq \min \left\{t_{A}(x \rightarrow(x \rightarrow y)), t_{A}(x \rightarrow x)\right\} \\
& =\min \left\{t_{A}(x \rightarrow(x \rightarrow y)), t_{A}(1)\right\} \\
& =t_{A}(x \rightarrow(x \rightarrow y)) \\
1-f_{A}(x \rightarrow y) & \geq \min \left\{1-f_{A}(x \rightarrow(x \rightarrow y)), 1-f_{A}(x \rightarrow x)\right\} \\
& =\min \left\{1-f_{A}(x \rightarrow(x \rightarrow y)), 1-f_{A}(1)\right\} \\
& =1-f_{A}(x \rightarrow(x \rightarrow y))
\end{aligned}
$$

for all $x, y, z \in L$.
(ii) \Rightarrow (iii) Suppose that A satisfies the condition (ii) and let $x, y, z \in L$.

Since $x \rightarrow(y \rightarrow z) \leq x \rightarrow((x \rightarrow y) \rightarrow(x \rightarrow z))$, it follows that

$$
\begin{aligned}
& t_{A}\left((x \rightarrow y) \rightarrow(x \rightarrow z)=t_{A}(x \rightarrow((x \rightarrow y) \rightarrow z))\right. \\
& \quad \geq t_{A}(x \rightarrow(x \rightarrow((x \rightarrow y) \rightarrow z))) \\
& \quad=t_{A}(x \rightarrow((x \rightarrow y) \rightarrow(x \rightarrow z))) \\
& \quad \geq t_{A}(x \rightarrow(y \rightarrow z)),
\end{aligned}
$$

$$
\begin{aligned}
& 1-f_{A}\left((x \rightarrow y) \rightarrow(x \rightarrow z)=1-f_{A}(x \rightarrow((x \rightarrow y) \rightarrow z))\right. \\
& \quad \geq 1-f_{A}(x \rightarrow(x \rightarrow((x \rightarrow y) \rightarrow z))) \\
& \quad=1-f_{A}(x \rightarrow((x \rightarrow y) \rightarrow(x \rightarrow z))) \\
& \geq 1-f_{A}(x \rightarrow(y \rightarrow z)) .
\end{aligned}
$$

(iii) \Rightarrow (i) If A satisfies the condition (iii), then

$$
\begin{aligned}
t_{A}(x \rightarrow y) & \geq \min \left\{t_{A}((x \rightarrow y) \rightarrow(x \rightarrow z)), t_{A}(x \rightarrow y)\right\} \\
& \geq \min \left\{t_{A}(x \rightarrow(y \rightarrow z)), t_{A}(x \rightarrow y)\right\}, \\
1-f_{A}(x \rightarrow y) & \geq \min \left\{1-f_{A}((x \rightarrow y) \rightarrow(x \rightarrow z)), 1-f_{A}(x \rightarrow y)\right\} \\
& \geq \min \left\{1-f_{A}(x \rightarrow(y \rightarrow z)), 1-f_{A}(x \rightarrow y)\right\} .
\end{aligned}
$$

This completes the proof.
Theorem 3.3. A vague set A in L is a vague filter of L if and only if for every $a, b, c \in L$ with $a \leq b \rightarrow c$, we have

$$
V_{A}(c) \succeq \operatorname{imin}\left\{V_{A}(a), V_{A}(b)\right\} .
$$

Proof. Suppose that A is a vague filter of L. Let $a, b, c \in L$ be such that $a \leq b \rightarrow$ c. Since $a \leq b \rightarrow c$, we have $t_{A}(a) \leq t_{A}(b \rightarrow c)$ and $1-f_{A}(a) \geq 1-f_{A}(b \rightarrow c)$, and so

$$
t_{A}(c) \geq \min \left\{t_{A}(b), t_{A}(b \rightarrow c)\right\} \geq \min \left\{t_{A}(b), t_{A}(a)\right\},
$$

$$
1-f_{A}(c) \geq \min \left\{1-f_{A}(b), 1-f_{A}(b \rightarrow c)\right\} \geq \min \left\{1-f_{A}(b), 1-f_{A}(a)\right\}
$$

Therefore $V_{A}(c) \succeq \operatorname{imin}\left\{V_{A}(a), V_{A}(b)\right\}$. Conversely, suppose that $V_{A}(c) \geq \min \left\{V_{A}(a), V_{A}(b)\right\}$. Since $x \leq x \rightarrow 1$ for all $x \in L$, we get

$$
t_{A}(1) \geq \min \left\{t_{A}(x), t_{A}(x)\right\}=t_{A}(x)
$$

$$
1-f_{A}(1) \geq \min \left\{1-f_{A}(x), 1-f_{A}(x)\right\}=1-f_{A}(x)
$$

for all $x \in L$. This proves $V_{A}(1) \geq V_{A}(x)$ hold. Since $x \rightarrow y \leq x \rightarrow y$ for all $x, y \in L$, we get

$$
\begin{gathered}
t_{A}(y) \geq \min \left\{t_{A}(x), t_{A}(x \rightarrow y)\right\}, \\
1-f_{A}(y) \geq \min \left\{1-f_{A}(x), 1-f_{A}(x \rightarrow y)\right\}
\end{gathered}
$$

for all $x, y \in L$. This proves $V_{A}(y) \succeq \operatorname{imin}\left\{V_{A}(x), V_{A}(x \rightarrow y)\right\}$ hold. Therefore A is a vague filter of L.

Theorem 3.4. Let A be a vague filter of L. Then for any $\alpha, \beta \in[0,1]$, the vague-cut $A_{(\alpha, \beta)}$ of L is a crisp filter of L.

Proof. Assume that A is a vague filter. Obviously, $1 \in A_{(\alpha, \beta)}$. Let $x, y \in L$ be such that $x \in A_{(\alpha, \beta)}$ and $x \rightarrow y \in A_{(\alpha, \beta)}$. Then $V_{A}(x) \succeq[\alpha, \beta]$, i.e., $t_{A}(x) \geq \alpha$ and $1-f_{A}(x) \geq \beta$; and $V_{A}(x \rightarrow y) \succeq[\alpha, \beta]$, i.e., $t_{A}(x \rightarrow y) \geq \alpha$ and $1-f_{A}(x \rightarrow y) \geq \beta$. It follows from (vf4) that

$$
t_{A}(y) \geq \min \left\{t_{A}(x), t_{A}(x \rightarrow y)\right\} \geq \alpha
$$

and

$$
1-f_{A}(y) \geq \min \left\{1-f_{A}(y), 1-f_{A}(x \rightarrow y)\right\} \geq \beta
$$

so that $V_{A}(y) \succeq[\alpha, \beta]$. Hence $y \in A_{(\alpha, \beta)}$. Therefore $A_{(\alpha, \beta)}$ is a filter of L.
The filters like $A_{(\alpha, \beta)}$ are also called vague-cut filters of X.
Definition 9. ($[1,3]$) If A is a vague set of L and θ is a map from L into itself, we define a maps $t_{A}{ }^{\theta}: L \rightarrow[0,1]$ and $f_{A}{ }^{\theta}: L \rightarrow[0,1]$ given by, respectively,
(1) $(\forall x \in L) t_{A}{ }^{\theta}(x)=t_{A}(\theta(x))$ and
(2) $(\forall x \in L) f_{A}{ }^{\theta}(x)=f_{A}(\theta(x))$.

In such case we write $V_{A}{ }^{\theta}(x)=V_{A}(\theta(x))$ for all $x \in L$.
Theorem 3.5. If A is a vague filter of L and θ is a homomorphism of L, then the vague set A^{θ} of X given by

$$
A^{\theta}=\left\{\left\langle x,\left[t_{A}{ }^{\theta}(x), t_{A}{ }^{\theta}(x)\right]\right\rangle \mid x \in L\right\},
$$

is also a vague filter of L.
Proof. For every $x, y \in L$ we have

$$
\begin{aligned}
t_{A}{ }^{\theta}(x \odot y) & =t_{A}(\theta(x \odot y))=t_{A}(\theta(x) \odot \theta(y)) \\
& \geq \min \left\{t_{A}(\theta(x)), t_{A}(\theta(y))\right\} \\
& \left.\left.=\min \left\{t_{A}{ }^{\theta}(x)\right), t_{A}{ }^{\theta}(y)\right)\right\}
\end{aligned}
$$

and

$$
\begin{aligned}
1-f_{A}{ }^{\theta}(x \odot y) & =1-f_{A}(\theta(x \odot y))=1-f_{A}(\theta(x) \odot \theta(y)) \\
& \geq \min \left\{1-f_{A}(\theta(x)), 1-f_{A}(\theta(y))\right\} \\
& \left.\left.=\min \left\{1-f_{A}{ }^{\theta}(x)\right), 1-f_{A}{ }^{\theta}(y)\right)\right\}
\end{aligned}
$$

Also, let $x \leq y$ we have

$$
t_{A}{ }^{\theta}(x)=t_{A}\left(\theta(x) \leq t_{A}\left(\theta(y)=t_{A}{ }^{\theta}(y)\right.\right.
$$

and

$$
1-f_{A}{ }^{\theta}(x)=1-f_{A}\left(\theta(x) \leq 1-f_{A}\left(\theta(y)=1-f_{A}{ }^{\theta}(y)\right.\right.
$$

Therefore A^{θ} is an vague filter of L.
Theorem 3.6. If A is a vague filter of L, then the set

$$
\Omega_{a}:=\left\{x \in L \mid V_{A}(x) \geq V_{A}(a)\right\}
$$

is a filter of L for every $a \in L$.
Proof. Since $V_{A}(1) \geq V_{A}(x)$ for all $x \in L$. we have $1 \in \Omega_{a}$. Let $x, y \in L$ be such that $x \in \Omega_{a}$ and $x \rightarrow y \in \Omega_{a}$. Then $t_{A}(x) \geq t_{A}(a), 1-f_{A}(x) \geq 1-f_{A}(a)$, $t_{A}(x \rightarrow y) \geq t_{A}(a)$ and $1-f_{A}(x \rightarrow y) \geq 1-f_{A}(a)$. Since A is a vague filter of L, it follows from (vf4) that

$$
\begin{gathered}
t_{A}(y) \geq \min \left\{t_{A}(x), t_{A}(x \rightarrow y)\right\} \geq t_{A}(a), \\
1-f_{A}(y) \geq \min \left\{1-f_{A}(x), 1-f_{A}(x \rightarrow y)\right\} \geq 1-f_{A}(a)
\end{gathered}
$$

so that $y \in \Omega_{a}$. Hence Ω_{a} is a filter of L.

Theorem 3.7. Let $a \in L$ and let A be a vague set in L. Then
(i) If Ω_{a} is a filter of L, then A satisfies the following implications:
$V_{A}(a) \preceq \operatorname{imin}\left\{V_{A}(x \rightarrow y), V_{A}(x)\right\} \Rightarrow V_{A}(a) \preceq V_{A}(y)---(*)$
for all $x, y \in L$.
(ii) If A satisfies ((vf3) and $\left(^{*}\right)$, then Ω_{a} is a filter of L.

Proof. (i) Assume that Ω_{a} is a filter of L. Let $x, y \in L$ be such that $V_{A}(a) \preceq$ $\operatorname{imin}\left\{V_{A}(x \rightarrow y), V_{A}(x)\right\}$ Then $x \rightarrow y \in \Omega_{a}$ and $x \in \Omega_{a}$. Using (f4), we get $y \in \Omega_{a}$. Threfore $V_{A}(y) \succeq V_{A}(a)$.
(ii) Suppose that A satisfies (vf3) and (*). From (vf3) it follows that $1 \in \Omega_{a}$. Let $x, y \in L$ be such that $x \in \Omega_{a}$ and $x \rightarrow y \in \Omega_{a}$. Then $V_{A}(a) \preceq V_{A}(x)$ and $V_{A}(a) \preceq V_{A}(x \rightarrow y)$. This means that $V_{A}(a) \preceq \operatorname{imin}\left\{V_{A}(x), V_{A}(x \rightarrow y)\right\}$. Thus $V_{A}(a) \preceq V_{A}(y)$ by $\left(^{*}\right)$. So $y \in \Omega_{a}$. Therefore Ω_{a} is a filter of L.

References

[1] R. Biswas, Vague groups, Internat. J. Comput. Cognition 4 (2006), no. 2, 20-23.
[2] F. Esteva and L. Godo, Monoidal t-norm based logic: towards a logic for left-continuous t-norms, Fuzzy Sets and Systems 124 (2001), 271-288.
[3] W. L. Gau and D. J. Buehrer, Vague sets, IEEE Transactions on Systems, Man and Cybernetics 23 (1993), 610-614.
[4] P. Hájek, Metamathematics of Fuzzy Logic, Kluwer Academic Press, Dordrecht, 1998.
[5] Y. B. Jun, Y. Xu and X. H. Zhang, Fuzzy filters of MTL-algebras, Inform. Sci. 175 (2005) 120-138.
[6] Y. B. Jun and C. H. Park, Vague ideals of subtraction algebras, Int. Math. Forum 2 (2007), no. 59, 2919-2926
[7] K. H. Kim, Q. Zhang and Y. B. Jun, On fuzzy filters of MTL-algebras, J. Fuzzy Math. 10 (2002), no. 4, 981-989.
[8] C. H. Park, Vague deductive systems of subtraction algebras, J. Appl. Math. Comput. 26 (2007), no. 1-2, 427-436.
[9] D. Pei, On equivalent forms of fuzzy logic systems NM and IMTL, Fuzzy Sets and Systems 138 (2003), 187-195.
[10] E. Turunen, BL-algebras of basic fuzzy logic, Mathware \& Soft Computing 6 (1999), 49-61.
[11] X. H. Zhang, N. K. Chengdu and W. A. Dudek, Ultra LI-ideals in lattice implication algebras and MTL-algebras, Czechoslovak Mathematical Journal 57(132) (2007), 591605.
[12] X. H. Zhang, On filters in MTL-algebras, submitted for publication.
[13] L. A. Zadeh, Fuzzy sets, Inform. and Control 8 (1965), 338-353.
Young Sik Park
Department of Mathematics, University of Ulsan, Ulsan 680-749, Korea
E-mail address: yspark@ulsan.ac.kr
Chul Hwan Park
School of Digital, Mechanics, Ulsan Colleage, Namgu, UlSan 680-749, Korea
E-mail address: skyrosemary@gmail.com

