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Signal-to-Noise Ratio Formulas of a Scalar Gaussian Quantizer
Mismatched to a Laplacian Source

Jagan Rhee*, Sangsin Na* Regular Members

ABSTRACT

The paper derives formulas for the mean-squared error distortion and resulting signal-to-noise (sNR) ratio of a
fixed-rate scalar quantizer designed optimally in the minimum mean-squared error sense for a Gaussian density
with the standard deviation o, when it is mismatched to a Laplacian density with the standard deviation o,. The

SNR formulas, based on the key parameter and Bennett’s integral, are found accurate for a wide range of

p<E % > 0.25. Also an upper bound to the SNR is derived, which becomes tighter with increasing rate R and
q
indicates that the SNR behaves asymptotically as —QOPVmilg? JE dB.

Key Words : Gaussian guantizer, Laplacian source, the mean-squared error distortion, shape mismatch,
SNR formutas

L. Introduction ratio p=0,/0, is a measure of variance mismatch.

Certainly, the best possible SNR is attainable

Consider an N-point fizxed-rate scalar quantizer
@y that is designed optimally in the minimum
mean-squared error (MSE) sense for a probability
density function ¢(«) but is applied to a source with
another density function p(z), where
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These density functions are plotted in Fig. 1 in
the case of o,=1 and o,=2. In this
“shape/variance-mismatched” quantization we are
interested in finding formulas for the MSE distortion

D)= [ @ Q@) plelds @
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and the resulting signal-to-noise ratio

2

g
SNR= 1010ng6“2) dB. The standard deviation
N

when p(z) =q(z). In this matched case, we get the
minimum distortion D(Q,) from [1] as

1

3
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DQy) = TZ}\?(-/W wl)g (f)cbc) .

In the case of optimal @, for a zero-mean
\/?: WU?,
2NV*
and therefore the SNR(Q,) reduces to approximately

6.02R—4.35, where R=log,/V.

Gaussian density with variance o2, D(Qy)=

FRACT ITRIGN peser meghon ouls reglon

Fig. 1. A Gaussian quantizer mismatched to a Laplacian
source: 6, =1 and 6,=2.
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Since, throughout the paper, @, is optimal for
zero-mean Gaussian ¢(z), its thresholds =z,,..,z,,,
and quantization points y,,....ys, depicted in Fig. 1,
are symmetric, ie., for i=1,..,N, z, =z, ,_, and
Y. =~ Yys,_,. The region [z,,z,] will be called the
inner region and the distortion from it the inner
distortion, denoted 0. Similarly the union
(£, 2, ) U (T 3y, ,) Will be called the outer region
and the distortion from it the outer distortion,
denoted D,. The region-defining threshold z, (of
optimal Q) is called the key parameter.

The main result of the paper is a set of formulas
for the MSE distortion and the resulting SNR,
namely SNR, and SNR,. They are derived using the
methodology developed in [2], a formula from [3]
and Bennett’s integral [4] for approximating the key
parameter and the inner distortion, respectively. The
inner distortion is further approximated using Lether
and Wenston’s approach [5] to Dawson's integral
that results from evaluating Bennett’s integral.
Similarly the outer distortion is approximated using
Borjesson and Sundberg’s approximation [6] to the
¢ function. Numerical results show that, for a wide
range of p=0.25~4, these formulas predict SNRs
approximately within 1% from the true values for bit
rate 225, Also found is that an upper bound SNRY
to the SNR derived using only the outer distortion is
tight (approximately within 1% of error) for p=0.6
and R=8.7/p. The significance of the paper is in the
derivation of the closed-form expression for the SNR
due to “shape / variance- mismatched” quantization.
For example, the comparison of SNRY with the
above optimum from [1] shows the loss of 15.4 and
47.6 dB in the case of =8 and 16 when p=1, and
29.6 and 70.0 dB when p=2.

The upper bound SNRY  simplifies to

Qop\fi? VE= 12;33 VvE dB for large R which

reveals rather an interesting relationship that, upon
accepting its accuracy, the SNR is eventually
proportional to the square-root of R and inversely
proportional to p. To the best of the authors’
knowledge the results presented herein have not
been previously reported in the literature.

The rest of the paper is organized as follows.
Section II explains the methodology and derives the
principal formulas for the distortion. Section III
presents numerical results, assesses the accuracy of
the principal formulas, and discusses their
implications. Finally Section IV summarizes and

concludes.
Il. Approximation Formulas for Distortion

To derive an approximation formula for D(Q,),
we have taken the following approach [2]: (a) use
an approximation formula for the key parameter z,;
(b) approximate the inner distortion 2, by Bennett’s
integral and the outer distortion D, by a formula
derived herein; and (c) add these approximations for
the total distortion. The details follow.

2.1 Approximation Formula for the Key
Parameter z,
The following formula for z, from [3, Eq. (17)]
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yields values within 1% from the true =z, for
N=z=s,

2.2 Approximation Formula for the Inner
Distortion
The inner distortion D, is often approximated by
Bennett’s integralm:

Y oy L “pla)
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where Az} being the limiting optimal point density
¢/ (z)

M) = U .

/ ) Using the
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of @y, is given by

even symmetry of p(z), ¢(z) and @y, and noting
that (N-2)=N for large N lead to the

approximation ), :]3; for large N, where
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which, by completing the square and changing
variables, can be rewritten as
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2.3 Approximation Formula for the Outer
Distortion

The outer distortion D, =2 / {r =y ple)de

(also denoted 27;) can be shown in a straightforward

manner, with the substitution for p(z) and
integration by parts, to be
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Since the quantization point y,, being optimal, is
the centroid of [z,,c0) with respect to q(z), it is
related to z, through
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where Q(u)=—“—ﬂ—;- is the @ function.

2.4 Formulas for the Signal-to-Noise Ratio
The SNR of @,, will be approximated by the
following SNR,:

2

Uﬁ
SNR, = 10l0g; 2, )
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where D=D+D,, the sum of (4) and (5). One can
see that, upon inspecting (4), (5) and (6), the key
parameter z is the only Q,-related quantity needed
to compute SNR, and, when it is evaluated using
(3), SNR, is completely determined. The two special
functions, Dawson’s integral and the ¢ function,
need to be evaluated in the process.

Another formula proposed is SNR, (formally
defined in (13) below) obtained from (7) substituting
Lether and Wenston’s approximation for Dawson’s
integral and Borjesson and Sundberg’s approxi-
mation for the @ function. Lether and Wenston [5]
have proposed the following approximation to
Dawson’s integral:

o mau? — 2 - fu’
Flu) ~ 1—e +(22 ajvte X ®)
11

where «=173/107 =~ 1.6168 and 3=1237/514 ~0.4611,
The maximum error of the approximation is 3.08%
from the true value over all real ». With (8) in (4)
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Borjesson and Sundberg’s approximation [6] to
the @ function

Qu) = 10

is accurate for u» >0 with the maximum error of
1.17% at u=0.591. With (6) and (10)

Yv— Ty 2
o, pr(H it 2r0? ] . an
g, x?\,

Then combining (11) with (5) yields
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v
D,=D,=plole " l1- 2v2 +
Ty 27r02
p—| 1+ 41+ —
O'q I,V
) 2

pﬂ[u 1+ i ] ' 12)
9 37?\'

Therefore, SNR, is now formally defined as

o
SNR, = 1010g107?, (13)

where D=D,+D,, the sum of (9) and (12).
Compared with SNR,, the convenience of SNR,
consists in the fact that the evaluation of the special
functions is eliminated and the mechanism by which
p and z, (hence N) affect the distortion is shown
more clearly.

An upper bound to SNR is obtained noting that
the total distortion D(@,) is always greater than the

2

. . g
outer distortion D, and therefore SNR'= 1Olog107”
0

is an upperbound to the SNR. The following

approximation for SNR' follows from using the
approximation (12) for D, and keeping the three
most significant terms in (3) for z, with ¥=2% and
also inside the logarithm term in the resulting

expression:
; 204/3In2 InR ln(97rln2))
U / — — 7
SNR™~ pIn10 R(l 4RIn2  4RIn2
1 1
—10log,,|1— +
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M. Numerical Results

In this section the accuracy of the derived
formulas are evaluated. Toward this goal, optimal
quantizers for ¢(z) with o, =1 are designed for the
bit rate R ranging from 1 to 16, using the
Lloyd-Max algorithm [7, 8]. The algorithm stops
when the candidate quantization point zy +(z,—yy )

is within 107° of the best quantization point of
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Table 1. Optimal Gaussian quantizers: the key parameter x, and SNRs when mismatched to Laplacian sources

r Ty SNR

(V=2 p=025 p=05 p=0.75 p=1 p=15 p=2 p=4
1 0 -8.24 -1.10 2.03 2.94 2.75 226 1.21
2 0.981598821 2.29 4.52 7.05 7.18 5.70 4.47 2.30
3 1.747927491 4.03 10.24 12.20 11.39 8.46 6.49 3.29
4 2.400803398 10.19 15.99 17.40 15.40 10.97 8.32 4.19
5 2.975926035 16.18 21.82 22.54 19.10 13.22 9.97 5.00
6 3.492269162 22.14 27.72 2747 22.42 15.25 11.47 5.75
7 3.962315400 28.11 33.66 32.06 25.38 17.11 12.85 6.43
8 4.395065527 34.10 39.62 36.23 28.06 18.82 14.13 7.07
9 4.797249491 40.10 45.58 39.96 30.52 20.41 15.32 7.66
10 | 5.173991021 46.12 51.53 43.30 32.80 2191 16.44 8.22
11 5.529245868 52.13 57.45 46.34 34.95 23.33 17.50 8.75
12 | 5.866110888 58.15 63.31 49.15 36.98 24.67 18.51 9.26
13 | 6.187035222 64.17 69.07 51.78 3891 25.96 19.47 9.74
14 | 6.493992892 70.19 74.67 54.28 40.76 27.19 20.39 10.20
15 | 6.788802792 76.21 80.02 36.67 42.54 28.37 21.28 10.64
16 | 7.070054370 82.23 84.99 58.94 44.23 29.50 22.13 11.06
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3.1 Accuracy of the Formulas

Table 1 lists the key parameters z, and the SNRs
of optimal @, mismatched to Laplacian densities for
various values of p. (They are also plotted as a
shaded smooth surface in Fig. 2.) These true SNRs
are evaluated numerically using the designed optimal
quantizers. A general trend in the studied rate range
of 1 to 16 is that at a fixed R, as p increases from
0.25, the SNR increases before it eventually
decreases. This phenomenon reflects the fact that for
a fixed N, a small p results in “idling” of a large
portion of @, so that an increase in p causes a
wider portion of @, to be active, effecting a
reduced distortion, and a further increase in g results
in heavy tail probability that contributes to a large
outer distortion and hence a larger total distortion.
Another observation is that, for a given p, the rate
of increase in the SNR slows down with R, which
is especially noticeable in the case of p = 0.75.

The formulas SNR, (7) and SNR, (13) are
evaluated using (3) for z, to assess their accuracy
and SNRU (14) is also evaluated. The relative errors
of SNR, and SNR, from the true SNRs are
approximately 1% or less for R= 5, 0.5% or less for
Rz=6, and 0.28% or less for Rz 9. Fig. 3 shows the
plots of the true SNR, SNR, (the values for SNR,
and SNR, are so close that SNR, is omitted in Fig.
3 to avoid clutter), and SNRV. It is noted that the
plots of the true SNR and SNR, are so close that

Fig. 2. The SNR(shaded surface), SNR,(thin mesh lines),
and SNRVY (thick mesh lines) with respect to p and A
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they virtually overlap, making them indistinguishable
except for p<0.75 and R=5. The plots of SNRV in
dashed lines are also indistinguishable from those of
the true SNR and SNR, in the case of p<1.5 and
R=3 and are noticeable omnly for p=1, which
shows that SNRY is tight for large p< 1.5 even at
low R The tightness of SNR' indicates that for
large p the total distortion is dominated by the outer
distortion. For p=0.6 ~1.5 a rough numerical fitting
shows that SNRY is approximately at 2% or less
above the true values if R=>6.81/p"%" and 1% or less
if R=8.7/p. At small values of p < 0.5 the accuracy
of SNRY as an approximation of the SNR suffers
greatly from the ignored inner distortion in the
studied bit range, as evidenced in the case of p=05
in Fig. 3, and it is necessary to use SNR, or SNR,
for improved accuracy.

Based on these observations it is concluded that
the formulas for SNR, and SNR, are accurate
overall and that SNRY can be useful when
accompanied with a proper condition.

Fig. 3. The SNR(—), SNR,(—), and SNRY(-)

3.2 Further Discussion

The overall profiles of the SNR, SNR, and SNRY
are given in Fig. 2 with p ranging from 0.25 to 3
in the interval of 0.025 and R ranging from 1 to 16.
The smooth shaded surface represents the SNR,
whereas the thin and thick mesh lines respectively
represent SNR, and SNRY that are within 1% from
the SNR. The 1% error region of SNR, includes that
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of SNRY. As discussed in 3.1, these regions are
roughly specified by R=5 and p=0.25 for SNR,
and R=>87/p for SNRY.

The SNR surface in Fig. 2 can be divided into the
small-, medium-, and large-p regions corresponding
to p<0.6, 0.3<p<15, and p=15, respectively. In
the small-p region the SNR appears to increase
almost linearly with R in the studied bit range. In
the medium-p region the SNR seems to start with a
linear growth but end up with a sublinear growth
that is suggestive of a square-root law as in the case
of the large-p region. In the large-p region the SNR
increases slowly and levels off, which can be
explained inspecting SNRY in (14). It shows that
SNRY is asymptotically (large R) proportional to the
square root of R and inversely proportional to p, as

it simplifies to W\/E dB. (However, this

formula turns out rather loose in the studied bit
range.) Therefore, it is not very surprising to
observe the inverse proportionality of the (true) SNR
to p for R=8~9, e.g., from the last row of Table
1 one gets 58.94:44.23:22.13:11.06 ~ 0—175 %: %: %
for R=16.

IV. Summary and Conclusion

The paper has derived approximation formulas for
the MSE distortion and the SNR of optimal
Gaussian quantizers mismatched to a Laplacian
source. The derivation uses a formula for the key
parameter, Bennett’s integral for the inner distortion,
Lether-Wenston’s  approximation for Dawson’s
integral and Borjesson-Sundberg’s approximation for
the @ function. The derived formulas for the SNR
are accurate overall. An upper bound to the SNR is
also derived using the outer distortion only and
found to be useful, e.g., in the case of 0.6 <p<15
if R=8.7/p for the relative error of 1% or less, as
well as the case of p=15 if R=3. This upper
bound reduces asymptotically to 1—2:)—3 VvR dB,
whose discovery appears to be rather interesting in
that it shows that the SNR is eventually proportional

to the square root of the rate and inversely
proportional to the deviation ratio. This paper can be
useful when one wants to evaluate and predict the
SNR of a Gaussian quantizer applied to Laplacian
distribution.
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