DOI QR코드

DOI QR Code

Effects of the color components of light-cured composite resin before and after polymerization on degree of conversion and flexural strength

광중합형 복합레진의 중합 전, 후의 색 성분이 중합률과 굴곡강도에 미치는 영향

  • Yoo, Ji-A (Department of Dentistry, Seoul National University School of Dentistry) ;
  • Cho, Byeong-Hoon (Department of Conservative Dentistry, Seoul National University School of Dentistry and Dental Research Institute)
  • 유지아 (서울대학교 치의학대학원 치의학과) ;
  • 조병훈 (서울대학교 치의학대학원 치과보존학교실, 치의학연구소)
  • Received : 2011.01.29
  • Accepted : 2011.07.05
  • Published : 2011.07.29

Abstract

Objectives: This study investigated the effects of the color components of light-cured composite resin before and after polymerization on degree of conversion (DC) and biaxial flexural strength (FS). Materials and Methods: Four enamel shades (A1, A2, A3, A4) and two dentin shades (A2O, A3O) of Premisa (Kerr Co.) and Denfil (Vericom Co.) were evaluated on their CIE $L^*,\;a^*,\;b^*$ color components using the spectrophotometer before curing, after curing and at 7 day. The DC of same specimens were measured with Near-infrared spectrometer (Nexus, Thermo Nicolet Co.) at 2 hr after cure and at 7 day. Finally, the FS was obtained after all the other measurements were completed at 7 day. The correlations between each color component and DC and FS were evaluated. Results: The light-curing of composite resin resulted in color changes of Premisa in red-blue direction and Denfil in green-blue direction. The DC and FS were affected by product, time and shade (3-way ANOVA, p < 0.05) and product and shade (2-way ANOVA, p < 0.05), respectively. Premisa only showed a significant correlation between the DC and CIE $a^*$ component - before and after polymerization (Pearson product moment correlation, p < 0.05). The FS of Premisa showed significant negative correlations with CIE $a^*$ and CIE $b^*$ components. Conclusions: The DC and FS of the light-curing composite resin were affected by the color components of the material before and after polymerization.

연구목적: 복합레진의 색조를 색 성분요소인 CIE $Lab^*$ 각 성분요소로 측정하고, 동일 시편에 대해서 중합률과 2축 굴곡강도(biaxial flexural strength)를 측정하여 이들의 상관관계를 비교함으로써 복합레진의 중합전, 후의 색 성분요소가 중합률과 물성에 미치는 영향을 알아보고자 하였다. 연구 재료 및 방법: 두 종류의 복합레진 Premisa (Kerr Co.)와 Denfil (Vericom Co)의 법랑질 색조(A1, A2, A3, A4)와 상아질 색조(A2O, A3O)에 대해 원판형의 시편을 제작하여 색성분, 중합률 및 2축 굴곡강도를 측정하였다. 분광광도계를 이용하여 중합 전, 후 및 7일에 CIE $L^*,\;a^*,\;b^*$ 값을 측정하고, 같은 시편에 대해 근적외선분광기를 이용하여 중합 후 2시간과 7일에 중합률을 측정하였다. 중합 7일 후에 색 성분과 중합률을 측정한 후 만능시험기에서 2축 굴곡강도를 측정하였다. 색요소인 CIE $L^*,\;a^*,\;b^*$ 각각의 값과 중합률, 및 2축 굴곡강도의 상관관계를 분석하였다. 결과: 두 종의 광중합형 복합레진은 중합 전과 후에 색 성분요소, 즉 색조의 변화가 있었고, 광중합 후에도 시간이 경과하면서 중합률이 증가되었다. 중합률은 제품, 기간, 및 색조의 영향을 받고(3-way ANOVA, p < 0.05), 굴곡강도는 제품 및 색조의 영향을 받았다(2-way ANOVA, p < 0.05). 중합률은 Premisa 한 제품에서만 중합 전, 후의 CIE $a^*$ component와 유의한 상관관계를 보였고, 굴곡강도도 Premisa에서 CIE $a^*$ 및 CIE $b^*$ component와 음의 상관관계를 보였다(Pearson product moment correlation, p < 0.05). 결론: 광중합 복합레진의 중합률과 굴곡강도는 제품의 중합 전,후의 색 성분에 의해 영향을 받았다.

Keywords

References

  1. Shortall AC, Wilson HJ, Harrington E. Depth of cure of radiation-activated composite restoratives-influence of shade and opacity. J Oral Rehabil 1995;22:337-342. https://doi.org/10.1111/j.1365-2842.1995.tb00782.x
  2. Ruyter IE, Oysaed H. Composites for use in posterior composites: composition and conversion. J Biomed Mater Res 1987;1:11-23.
  3. Ferracane JL. Current trends in dental composites. Crit Rev Oral Biol Med 1995;6:302-318. https://doi.org/10.1177/10454411950060040301
  4. de Gee AJ, ten Harkel-Hagenaar E, Davidson CL. Color dye for identification of incompletely cured composite resins. J Prosthet Dent 1984;52:626-631. https://doi.org/10.1016/0022-3913(84)90129-X
  5. Sideridou I, Tserki V, Papanastasiou G. Study of water sorption, solubility and modulus of elasticity of light-cured dimethacrylate-based dental resins. Biomaterials 2003;24:655-665. https://doi.org/10.1016/S0142-9612(02)00380-0
  6. Carmichael AJ, Gibson JJ, Walls AW. Allergic contact dermatitis to bisphenol-A-glycidyldimethacrylate (Bis-GMA) dental resin associated with sensitivity to epoxy resin. Br Dent J 1997;183:297-298. https://doi.org/10.1038/sj.bdj.4809499
  7. Hansel C, Leyhausen G, Mai UE, Geurtsen W. Effetcs of various resin composite (co) monomers and extracts on two caries-associated micro-organisms in vitro. J Dent Res 1998;77:60-67. https://doi.org/10.1177/00220345980770010601
  8. Lovell LG, Stansbury JW, Syrpes DC, Bowman CN. Effects of composition and reactivity on the reaction kinetics of dimethacrylate/dimethacrylate copolymerizations. Macromolecules 1999;32:3913-3921. https://doi.org/10.1021/ma990258d
  9. Ruyter IE, Oysaed H. Conversion in different depths of ultraviolet and visible light activated composite materials. Acta Odontol Scand 1982;40:179-192. https://doi.org/10.3109/00016358209012726
  10. Swartz ML, Phillips RW, Rhodes B. Visible light activated resins - depth of cure. J Am Dent Assoc 1983;106:634-637.
  11. Ferracane JL, Aday P, Matsumoto H, Marker VA. Relationship between shade and depth of cure for light activated dental composite resins. Dent Mater 1986;2:80-84. https://doi.org/10.1016/S0109-5641(86)80057-4
  12. Davidson-Kaban SS, Davidson CL, Feilzer AJ, de Gee AJ, Erdilek N. The effect of curing light variationson bulk curing and wall-to-wall quality of two types and various shades of resin composites. Dent Mater 1997;13:344-352. https://doi.org/10.1016/S0109-5641(97)80105-4
  13. Yearn JA. Factors affecting cure of visible light activated composites. Int Dent J 1985;35:218-225.
  14. Rueggeberg FA, Caughman WF, Curtis JW Jr. Effect of light intensity and exposure duration on cure of resin composite. Oper Dent 1994;19:26-32.
  15. Unterbrink GL, Muessner R. Influence of light intensity on two restorative systems. J Dent 1995;23:183-189. https://doi.org/10.1016/0300-5712(95)93577-O
  16. Sakaguchi RL, Berge HX. Reduced light energy density decreases post-gel contraction while maintaining degree of conversion in composites. J Dent 1998;26:695-700. https://doi.org/10.1016/S0300-5712(97)00048-1
  17. Pires JA, Cvitko E, Denehy GE, Swift EJ Jr. Effects of curing tip distance on light intensity and composite resin microhardness. Quintessence Int 1993;24:517-521.
  18. Hansen EK, Asmussen E. Visible-light curing units: correlation between depth of cure and distance between exit window and resin surface. Acta Odontol Scand 1997;55:162-166. https://doi.org/10.3109/00016359709115410
  19. Leloup G, Holvoet PE, Bebelman S, Devaux J. Raman scattering determination of the depth of cure of light-activated composites: influence of different clinically relevant parameters. J Oral Rehabil 2002;29:510-515. https://doi.org/10.1046/j.1365-2842.2002.00889.x
  20. Aravamudhan K, Floyd CJ, Rakowski D, Flaim G, Dickens SH, Eichmiller FC, Fan PL. Light-emitting diode curing light irradiance and polymerization of resin-based composite. J Am Dent Assoc 2006;137;213-223. https://doi.org/10.14219/jada.archive.2006.0147
  21. Omaima MS, Hamza A, Taheya A, Moussa. Influence of shade and time on the degree of conversion and fracture strength of light-cured composite resin. J Egyptian Dent Assoc 1999;45:4487.
  22. Chen YC, Ferracane JL, Prahl SA. A pilot study of a simple photon migration model for predicting depth of cure in dental composite. Dent Mater 2005;21:1075-1086. https://doi.org/10.1016/j.dental.2005.05.002
  23. Stansbury JW, Dickens SH. Determination of double bond conversion in dental resins by near infrared spectroscopy. Dent Mater 2001;17:71-79. https://doi.org/10.1016/S0109-5641(00)00062-2
  24. Wei W, Sadeghipour K, Boberick K, Baran G. Predictive modeling of elastic properties of particulate-reinforced composites. Mater Sci Eng A 2002;332:362-370. https://doi.org/10.1016/S0921-5093(01)01836-6
  25. Braem M, Van Doren VE, Lambrechts P, Vanherle G. Determination of Young's modulus of dental composites: a phenomenological model. J Mater Sci 1987;22:2037-2042. https://doi.org/10.1007/BF01132936
  26. Chung SM, Yap AU, Koh WK, Tsai KT, Lim CT. Measurement of Poisson's ratio of dental composite restorative materials. Biomaterials 2004;25:2455-2460. https://doi.org/10.1016/j.biomaterials.2003.09.029
  27. Cho YG, Kim MC. Color changes in composites according to various light curing sources. J Kor Acad Cons Dent 2002;27:87-94. https://doi.org/10.5395/JKACD.2002.27.1.087
  28. Rueggeberg FA, Caughman WF, Curtis JW Jr, Davis HC. Factors affecting cure at depths within light-activated resin composites. Am J Dent 1993;6;91-95.
  29. Park SJ, Noh EY, Cho HG, Hwang YC, Oh WM, Hwang IN. Color difference of the dental composites measured by different color measuring instruments. J Kor Acad Cons Dent 2009;34:199-207. https://doi.org/10.5395/JKACD.2009.34.3.199
  30. Makinson OF. Colour changes on curing light-activated anterior restorative resins. Aust Dent J 1989;34:154-159. https://doi.org/10.1111/j.1834-7819.1989.tb04625.x
  31. Taira M, Okazaki M, Takahashi J. Studies on optical properties of two commercial visible-light-cured composite resins by diffuse reflectance measurements. J Oral Rehabil 1999;26:329-337. https://doi.org/10.1046/j.1365-2842.1999.00378.x
  32. Yu B, Lee YK. Influence of color parameters of resin composites on their translucency. Dent Mater 2008;24:1236-1242. https://doi.org/10.1016/j.dental.2008.01.016
  33. Kim IJ, Lee YK. Changes in color and color parameters of dental resin composites after polymerization. J Biomed Mater Res B Appl Biomater 2007;80:541-546.
  34. Kawaguchi M, Fukushima T, Miyazaki K. The relationship between cure depth and transmission coefficient of visible light-activated resin composites. J Dent Res 1994;73:516-521.
  35. Watts DC, Cash AJ. Analysis of optical transmission by 400-500 nm visible light into aesthetic dental biomaterials. J Dent 1994;22:112-117. https://doi.org/10.1016/0300-5712(94)90014-0
  36. Seghi RR, Gritz MD, Kim J. Colorimetric changes in composites resulting from visible-light-initiated polymerization. Dent Mater 1990;6:133-137. https://doi.org/10.1016/S0109-5641(05)80044-2
  37. Uchida H, Vaidyanathan J, Viswanadhan T, Vaidyanathan TK. Color stability of dental composites as a function of shade. J Prosthet Dent 1998;79:372-377. https://doi.org/10.1016/S0022-3913(98)70147-7
  38. Cho YG, Seo JI, Kim SM, Jeong JH, Lee YG. Color changes in composite resins exposed to xenon lamp. J Kor Acad Cons Dent 2003;28:195-202. https://doi.org/10.5395/JKACD.2003.28.3.195
  39. Bouschlicher MR, Rueggeberg FA, Wilson BM. Correlation of bottom-to-top surface microhardness and conversion ratios for a variety of resin composite compositions. Oper Dent 2004;29:698-704.
  40. Rodrigues SA Jr, Scherrer SS, Ferracane JL, Della Bona A. Microstructural characterization and fracture behavior of a microhybrid and a nanofill composite. Dent Mater 2008;24;1281-1288. https://doi.org/10.1016/j.dental.2008.02.006
  41. Spanoudakis J, Young RJ. Crack propagation in a glass particle-filled epoxi resin. J Mater Sci 1984;19:473-486.
  42. Ferracane JL, Berge HX, Condon JR. In vitro aging of dental composites in water-Effect of degree of conversion, filler volume, and filler/matrix coupling. J Biomed Mater Res 1998;42:465-472. https://doi.org/10.1002/(SICI)1097-4636(19981205)42:3<465::AID-JBM17>3.0.CO;2-F
  43. Kim KH, Ong JL, Okuno O. The effect of filler loading and morphology on the mechanical properties of contemporary composites. J Prosthet Dent 2002;87:642-649. https://doi.org/10.1067/mpr.2002.125179
  44. Chung SM, Yap AU, Chandra SP, Lim CT. Flexural strength of dental composite restoratives: comparison of biaxial and three-point bending test. J Biomed Mater Res B Appl Biomater 2004;71:278-283.
  45. Cesar PF, Miranda WG Jr, Braga RR. Influence of shade and storage time on the flexural strength, flexural modulus, and hardness of composites used for indirect restorations. J Prosthet Dent 2001;86:289-296. https://doi.org/10.1067/mpr.2001.114513
  46. Lin-Gibson S, Sung L, Forster AM, Hu H, Cheng Y, Lin NJ. Effects of filler type and content on mechanical properties of photopolymerizable composites measured across two-dimensional combinatorial arrays. Biomaterials 2009;5:2084-2094. https://doi.org/10.1016/j.actbio.2009.01.043