DOI QR코드

DOI QR Code

Effect of adhesive hydrophobicity on microtensile bond strength of low-shrinkage silorane resin to dentin

접착시스템의 소수성이 Low-shrinkage silorane resin과 상아질의 미세인장강도에 미치는 영향

  • Cho, So-Yeun (Department of Conservative Dentistry, Jeonbuk National University School of Dentistry) ;
  • Kang, Hyun-Young (Department of Conservative Dentistry, Jeonbuk National University School of Dentistry) ;
  • Kim, Kyoung-A (Department of Conservative Dentistry, Jeonbuk National University School of Dentistry) ;
  • Yu, Mi-Kyung (Department of Conservative Dentistry, Jeonbuk National University School of Dentistry) ;
  • Lee, Kwang-Won (Department of Conservative Dentistry, Jeonbuk National University School of Dentistry)
  • 조소연 (전북대학교 치의학전문대학원 치과보존학교실) ;
  • 강현영 (전북대학교 치의학전문대학원 치과보존학교실) ;
  • 김경아 (전북대학교 치의학전문대학원 치과보존학교실) ;
  • 유미경 (전북대학교 치의학전문대학원 치과보존학교실) ;
  • 이광원 (전북대학교 치의학전문대학원 치과보존학교실)
  • Received : 2011.04.11
  • Accepted : 2011.06.17
  • Published : 2011.07.29

Abstract

Objectives: The purpose of this study was to evaluate ${\mu}TBS$ (microtensile bond strength) of current dentin bonding adhesives which have different hydrophobicity with low-shrinkage silorane resin. Materials and Methods: Thirty-six human third molars were used. Middle dentin was exposed. The teeth were randomly assigned to nine experimental groups: Silorane self-etch adhesives (SS), SS + phosphoric acid etching (SS + pa), Adper easy bond (AE), AE + Silorane system bonding (AE + SSb), Clearfil SE bond (CSE), CSE + SSb, All-Bond 2 (AB2), AB2 + SSb, All-Bond 3 (AB3). After adhesive's were applied, the clinical crowns were restored with Filtek LS (3M ESPE). The 0.8 mm ${\times}$ 0.8 mm sticks were submitted to a tensile load using a Micro Tensile Tester (Bisco Inc.). Water sorption was measured to estimate hydrophobicity adhesives. Results: ${\mu}TBS$ of silorane resin to 5 adhesives: SS, 23.2 MPa; CSE, 19.4 MPa; AB3, 30.3 MPa; AB2 and AE, no bond. Additional layering of SSb: CSE + SSb, 26.2 MPa; AB2 + SSb, 33.9 MPa; AE + SSb, no bond. High value of ${\mu}TBS$ was related to cohesive failure. SS showed the lowest water sorption. AE showed the highest solubility. Conclusions: The hydrophobicity of adhesive increased, and silorane resin bond-strength was also increased. Additional hydrophobic adhesive layer did not increase the bond-strength to silorane resin except AB2 + SSb. All-Bond 3 showed similar ${\mu}TBS$ & water sorption with SS. By these facts, we could reach a conclusion that All-Bond 3 is a competitive adhesive which can replace the Silorane adhesive system.

연구목적: 본 연구의 목적은 다양한 소수성을 지닌 최신 상아질 접착시스템과 저수축 silorane 레진의 미세인장결합강도를 평가하는 것이다. 연구 재료 및 방법: 36개의 갓 발치된 제3대구치를 이용했다. Low-speed diamond saw를 사용하여 교합면에 평행하게 치관을 잘라 middle dentin을 노출시켰다. 치아를 무작위로 9 group으로 나눴다. Silorane self-etch adhesives (SS), SS + phosphoric acid etching (SS + pa), Adper Easy bond (AE), AE + Silorane system bonding (AE + SSb), Clearfil SE bond (CSE), CSE + SSb, All-Bond 2 (AB2), AB2 + SSb, All-Bond 3 (AB3). 접착제를 적용한 후에 Filtek LS (3M ESPE)를 2 mm씩 3회 적층충전하였다. 각 층은 40s씩 광중합하였다. 0.8 mm ${\times}$ 0.8 mm stick을 Micro Tensile Tester로 1 mm/min cross-head speed의 인장력을 가하였다. 파절양상를 관찰하기 위해 광학현미경을 이용하였다. 5가지 접착제의 소수성정도를 결정하기위해 water sorption test하였다. 결과: silorane 레진과 5가지 접착제의 ${\mu}TBS$: SS, 23.2 ${\pm}$ 6.9 MPa; CSE, 19.4 ${\pm}$ 4.4 MPa; AB3, 30.3 ${\pm}$ 4.0 MPa; AB2와 AE, no bond. Additional layering of SSb: CSE + SSb, 26.2 ${\pm}$ 10.3 MPa; AB2 + SSb, 33.9 ${\pm}$ 7.3 MPa; AE + SSb, no bond. 높은 ${\mu}TBS$는 cohesive failure와 관련있었다. SS는 낮은 가장 낮은 water sorption을 보였고 다음으로 AB3, AE, CSE, AB2 순서였다. AE는 가장 높은 용해도를 나타냈고 다음으로 CSE, AB2였다. 결론: 접착제의 소수성이 증가할수록, silorane 레진의 접착강도도 증가하였다. 비전용접착제 위에 silorane adhesive bonding을 layering하는 것은 AB2 + SSb 그룹에서만 결합강도를 유의하게 증가시켰다. AB3는 SS와 유사한 ${\mu}TBS$ & water sorption을 나타냈다. 따라서 AB3는 siloran resin을 접착시키는데 SS를 대체할만한 경쟁력있는 접착제이다.

Keywords

References

  1. Ernst CP, Meyer GR, Klocker K, Willershausen B. Determination of polymerization shrinkage stress by means of a photoelastic investigation. Dent Mater 2004;20:313-321. https://doi.org/10.1016/S0109-5641(03)00109-X
  2. Weinmann W, Thalacker C, Guggenberger R. Siloranes in dental composites. Dent Mater 2005;21:68-74. https://doi.org/10.1016/j.dental.2004.10.007
  3. Ilie N, Jelen E, Clementino-Luedemann T, Hickel R. Low-shrinkage composite for dental application. Dent Mater 2007;26:149-155. https://doi.org/10.4012/dmj.26.149
  4. Eick JD, Smith RE, Pinzino CS, Kostoryz EL. Stability of silorane dental monomers in aqueous systems. J Dent 2006;34:405-410. https://doi.org/10.1016/j.jdent.2005.09.004
  5. Ilie N, Hickel R. Macro-, micro- and nano-mechanical investigations on silorane and methacrylate-based composites. Dent Mater 2009;25:810-819. https://doi.org/10.1016/j.dental.2009.02.005
  6. Mine A, De Munck J, Van Ende A, Cardoso MV, Kuboki T, Yoshida Y, Van Meerbeek B. TEM characterization of a silorane composite bonded to enamel/dentin. Dent Mater 2010;26:524-532. https://doi.org/10.1016/j.dental.2010.01.010
  7. Van Meerbeek B, De Munck J, Yoshida Y, Inoue S, Vargas M, Vijay P, Van Landuyt K, Lambrechts P, Vanherle G. Buonocore memorial lecture. Adhesion to enamel and dentin: current status and future challenges. Oper Dent 2003;28:215-235.
  8. Van Landuyt KL, De Munck J, Snauwaert J, Coutinho E, Poitevin A, Yoshida Y, Inoue S, Peumans M, Suzuki K, Lambrechts P, Van Meerbeek B. Monomer-solvent phase separation in one-step self-etch adhesives. J Dent Res 2005;84:183-188. https://doi.org/10.1177/154405910508400214
  9. Ernst CP, Galler P, Willershausen B, Haller B. Marginal integrity of class V restorations: SEM versus dye penetration. Dent Mater 2008;24:319-327. https://doi.org/10.1016/j.dental.2007.06.002
  10. Duarte S Jr, Phark JH, Varjao FM, Sadan A. Nanoleakage, ultramorphological characteristics, and microtensile bond strengths of a new low-shrinkage composite to dentin after artificial aging. Dent Mater 2009;25:589-600. https://doi.org/10.1016/j.dental.2008.10.012
  11. Della Bona A, Anusavice KJ, Mecholsky JJ Jr. Failure analysis of resin composite bonded to ceramic. Dent Mater 2003;19:693-699. https://doi.org/10.1016/S0109-5641(03)00015-0
  12. Ito S, Hashimoto M, Wadgaonkar B, Svizero N, Carvalho RM, Yiu C, Rueggeberg FA, Foulger S, Saito T, Nishitani Y, Yoshiyama M, Tay FR, Pashley DH. Effects of resin hydrophilicity on water sorption and changes in modulus of elasticity. Biomaterials 2005;26:6449-6459. https://doi.org/10.1016/j.biomaterials.2005.04.052
  13. Burrow MF, Inokoshi S, Tagami J. Water sorption of several bonding resins. Am J Dent 1999;12:295-298.
  14. Malacarne J, Carvalho RM, de Goes MF, Svizero N, Pashley DH, Tay FR, Yiu CK, Carrilho MR. Water sorption/solubility of dental adhesive resins. Dent Mater 2006;22:973-980. https://doi.org/10.1016/j.dental.2005.11.020
  15. Hosaka K, Nakajima M, Takahashi M, Itoh S, Ikeda M, Tagami J, Pashley DH. Relationship between mechanical properties of one-step self-etch adhesives and water sorption. Dent Mater 2010;26:360-367. https://doi.org/10.1016/j.dental.2009.12.007
  16. Soles CL, Yee AF. A discussion of the molecular mechanisms of moisture transport in epoxy resins. J Polym Sci 2000;38:792-802. https://doi.org/10.1002/(SICI)1099-0488(20000301)38:5<792::AID-POLB16>3.0.CO;2-H
  17. Vrentas JS, Duda JL. A free-volume interpretation of the influence of the glass transition on diffusion in amorphous polymers. J Appl Polym Sci 1978;22:2325-2339. https://doi.org/10.1002/app.1978.070220823
  18. Brazel CS, Peppas NA. Mechanisms of solute and drug transport in relaxing, swellable hydrophilic glassy polymers. Polymer 1999;40:3383-3398. https://doi.org/10.1016/S0032-3861(98)00546-1
  19. Brazel CS, Peppas NA. Dimensionless analysis of swelling of hydrophilic glassy polymers with subsequent drug release from relaxing structures. Biomaterials 1999;20:721-732. https://doi.org/10.1016/S0142-9612(98)00215-4
  20. Oysaed H, Ruyter IE. Water sorption and filler characteristics of composites for use in posterior teeth. J Dent Res 1986;65;1315-1318. https://doi.org/10.1177/00220345860650110601
  21. Braden M, Clarke RL. Water absorption characteristics of dental microfine composite filling materials. I. Proprietary materials. Biomaterials 1984;5:369-372. https://doi.org/10.1016/0142-9612(84)90038-3
  22. Mese A, Burrow MF, Tyas MJ. Sorption and solubility of luting cements in different solutions. Dent Mater J 2008;27:702-709. https://doi.org/10.4012/dmj.27.702
  23. Summitt JB, Robbins JW, Hilton TJ, Schwartz RS. Fundamentals of operative dentistry. 3rd ed. Hanover Park, Illinois: Quintessence Publishing Co, Inc; 2006. p196.
  24. Gregoire G, Dabsie F, Dieng-Sarr F, Akon B, Sharrock P. Solvent composition of one-step self-etch adhesives and dentine wettability. J Dent 2011;39:30-39. https://doi.org/10.1016/j.jdent.2010.09.008
  25. Reis A, Leite TM, Matte K, Michels R, Amaral RC, Geraldeli S, Loguercio AD. Improving clinical retention of one-step self-etching adhesive systems with an additional hydrophobic adhesive layer. J Am Dent Assoc 2009;140:877-885. https://doi.org/10.14219/jada.archive.2009.0281
  26. Brackett WW, Ito S, Tay FR, Haisch LD, Pashley DH. Microtensile dentin bond strength of self-etching resins: effect of a hydrophobic layer. Oper Dent 2005;30:733-738.
  27. Tay FR, Gwinnett JA, Wei SH. Wei. The overwet phenomenon in two-component acetone-based primers containing aryl amine and carboxylic acid monomers. Dent Mater 1997;13:118-127. https://doi.org/10.1016/S0109-5641(97)80021-8
  28. Cho BH, Dickens SH. Effects of the acetone content of single solution dentin bonding agents on the adhesive layer thickness and the microtensile bond strength. Dent Mater 2004;20:107-115. https://doi.org/10.1016/S0109-5641(03)00071-X
  29. Sadek FT, Castellan CS, Braga RR, Mai S, Tjaderhane L, Pashley DH, Tay FR. One-year stability of resin-dentin bonds created with a hydrophobic ethanol-wet bonding technique. Dent mater 2010;26:380-386. https://doi.org/10.1016/j.dental.2009.12.009

Cited by

  1. Microtensile bond strength of silorane-based composite specific adhesive system using different bonding strategies vol.40, pp.1, 2015, https://doi.org/10.5395/rde.2015.40.1.23