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ON SECOND ORDER NONCONVEX SWEEPING PROCESS

WITH NONCONVEX PERTURBATION

Myelkebir Aitalioubrahim

Abstract. This paper deals with the existence result of solutions of a
second order functional differential inclusion, governed by a class of non-
convex sweeping process, with a nonconvex perturbation.

1. Introduction

Let H be a real separable Hilbert space with the norm ∥ · ∥ and the scalar
product ⟨·, ·⟩. For I a segment in R, we denote by C(I,H) the Banach space
of continuous functions from I to H equipped with the norm ∥x(·)∥∞ :=
sup

{
∥x(t)∥ : t ∈ I

}
. For a a positive number, we put Ca := C([−a, 0], H)

and for any t ∈ [0, T ], T > 0, we define the operator T (t) from C([−a, T ], H)
to Ca with (T (t)(x(·)))(s) := (T (t)x)(s) := x(t + s), s ∈ [−a, 0]. For x ∈ H
and r > 0 let B(x, r) :=

{
y ∈ H : ∥y − x∥ < r

}
be the open ball centered

at x with radius r and B(x, r) be its closure and put B = B(0, 1). For φ ∈ Ca
and r > 0 let Ba(φ, r) :=

{
ψ ∈ H : ∥ψ − φ∥ < r

}
be the open ball centered

at φ with radius r and Ba(φ, r) be its closure. For x ∈ H and for nonempty
subsets A,B of H we denote dA(x) or d(x,A) the real inf

{
∥y − x∥ : y ∈ A

}
,

e(A,B) := sup
{
dB(x) : x ∈ A

}
and H(A,B) = max

{
e(A,B), e(B,A)

}
. A

multifunction is said to be measurable if its graph is measurable. For more de-
tails on measurability theory, we refer the reader to book of Castaing-Valadier
[11].

In this paper, we study the existence of solutions of the following nonconvex
differential inclusions

ẍ(t) ∈ −Np
C(x(t))(ẋ(t)) + F (t, T (t)x, T (t)ẋ) a.e. on [0,T];

ẋ(t) = φ̄(t) ∀t ∈ [−a, 0];
ẋ(t) ∈ C(x(t)) ∀t ∈ [0, T ];
x(t) = φ(t) ∀t ∈ [−a, 0],

(1.1)
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where C is a set-valued mapping, Np
C(x(t))(ẋ(t)) denotes a prescribed normal

cone to the set C(x(t)) at ẋ(t), F is a set-valued mapping, measurable with
respect to the first argument and Lipschitz continuous with respect to the third
argument, φ and φ̄ are two continuous functions.

Convex sweeping process was introduced and studied by Moreau (see for
example [19]). We refer to [18] and [15] for a complete bibliography on the
subject. Note that, the sweeping process is related to the modelization of
elasto-plastic materials (see for example [20, 21]). For the sweeping process
without convexity, we refer the reader to [1, 4] and the references therein.

The second order sweeping process has been studied by several authors.
Castaing [9] studied, for the first time, the particular type of second order dif-
ferential inclusions, ẍ(t) ∈ −NC(x(t))(ẋ(t)), ẋ(t) ∈ C(x(t)), where C is a convex
compact set-valued mapping. Bounkhel and Laouir-Azzam [6] studied, in finite
dimensional space, the perturbed problem ẍ(t) ∈ −NC(x(t))(ẋ(t)) + F (t, ẋ(t))
when C is nonconvex and the multifunction F is bounded with convex val-
ues. The same authors proved existence results, in Hilbert space, for the
following perturbed problem ẍ(t) ∈ −NC(x(t))(ẋ(t)) + F (t, x(t)) when C is
nonconvex and F is nonconvex and continuous. Bounkhel [5] proved sev-
eral existence theorems, in separable Hilbert space, for the following general
problem, which covers all the problems studied before and mentioned above,
ẍ(t) ∈ −Np

C(x(t))(ẋ(t)) + F (t, x(t), ẋ(t)) + G(t, x(t), ẋ(t)), where C is noncon-

vex such that C(x) is contained in compact convex set or C is anti-monotone
and C(x) ⊂ lB (l ∈ R), F is a scalarly upper semicontinuous convex com-
pact set-valued mapping, and G is a nonconvex compact continuous set-valued
mapping. Azzam-Laouir [3] proved, in finite dimensional, the existence of solu-
tions of the following problem ẍ(t) ∈ −NC(x(t))(ẋ(t)) + F (t, x(t), ẋ(t)) when F
is mixed semicontinuous, C is Lipschiz and C(x) is uniformly ρ-prox-regular.
Bounkhel and Yarou [8] studied the second order sweeping process with de-
lay ẍ(t) ∈ −NC(x(t))(ẋ(t)) + F (t, T (t)x, T (t)ẋ) when C is Lipschiz, C(x) is
uniformly ρ-prox-regular, C(x) is contained in compact convex set, and F is
scalarily upper semicontinuous with convex weakly compact values.

In this paper, our main purpose is to obtain the existence of solutions of
the general problem (1.1), in the case when the perturbation F is a measur-
able multifunction with respect to the first argument and Lipschitz continuous
with respect to the third argument with closed values, and C is Lipschiz mul-
tifunction such that C(x) is uniformly ρ-prox-regular and C(x) is contained in
compact set. Note that the hypotheses imposed on the right-hand side, and
methods of the proof are different from the above cited works. Indeed, in this
paper

• F is not continuous (contrary to [5]), it is nonconvex (contrary to [6, 8])
and it is noncompact (contrary to [5, 8]).

• C is nonconvex and not contained in convex set (contrary to [5, 8, 9]).
• The space of states is infinite-dimensional (contrary to [3, 6]).
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Furthermore, the construction of the sequence of approximate solutions is dif-
ferent from that used in [3, 5, 6, 8, 9].

The paper is organized as follows. In Section 2, we recall some preliminary
facts that we need in the sequel while in Section 3, we prove our main result.

2. Preliminaries and statement of the main result

We need first to recall some notations and definitions that will be used in
all the paper.

Let V : H → R ∪ {+∞} be a lower semicontinuous function and x be any
point where V is finite. The proximal subdifferential ∂pV (x) of V at x is the
set of all y ∈ H, for which there exist δ, σ > 0 such that for all x′ ∈ x+ δB

⟨y, x′ − x⟩ ≤ V (x′)− V (x) + σ∥x′ − x∥2.
Let S be a nonempty closed subset of H and x be a point in S.We recall (see

[13]) that the proximal normal cone of S at x is defined by Np
S(x) := ∂pψS(x),

where ψS(·) denotes the indicator function of S, i.e., ψS(x) = 0 if x ∈ S and
+∞ otherwise.

Recall now that for a given ρ ∈]0,+∞], a subset S is uniformly ρ-prox-
regular (see [22]), or equivalently ρ-proximally smooth (see [13]), if and only if
every nonzero proximal normal to S can be realized by an ρ-ball, this means
that for all x̄ ∈ S and all ξ ∈ Np

S(x̄) \ {0} one has⟨
ξ

∥ξ∥
, x− x̄

⟩
≤ 1

2ρ
∥x− x̄∥2

for all x ∈ S. We make the convention 1
ρ = 0 for ρ = +∞. Recall that for

ρ = +∞ the uniform ρ-prox-regularity of S is equivalent to the convexity of S.
The following propositions summarize some important consequences of uni-

form prox-regularity needed in the sequel.

Porposition 2.1 ([22]). Let S be a nonempty closed subset in H and x ∈ S.
The following assertions hold:

(i) ∂pd(x, S) = Np
S(x) ∩B;

(ii) Let ρ ∈]0,+∞]. If S is uniformly ρ-prox-regular, then for all x ∈ H
with d(x, S) < ρ one has ProjS(x) ̸= ∅ and ∂P d(x, S) = ∂Cd(x, S),
where ∂Cd(x, S) is the Clarke subdifferential of d(·, S) at x. So, in such
a case, the subdiferential ∂d(x, S) := ∂P d(x, S) = ∂Cd(x, S) is a closed
convex set in H.

(iii) If S is uniformly ρ-prox-regular, then for all xi ∈ S and all vi ∈ Np
S(xi)

with ∥vi∥ ≤ ρ (i = 1, 2) one has

⟨v1 − v2, x1 − x2⟩ ≥ −∥x1 − x2∥2.

As a consequence of (iii) we get that for uniformly ρ-prox-regular sets, the
proximal normal cone to S coincides with all the normal cones contained in the
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Clarke normal cone at all points x ∈ S, i.e., NP
S (x) = NC

S (x). In such a case,
we put NS(x) := NP

S (x) = NC
S (x).

Porposition 2.2 ([7]). Let ρ ∈]0,+∞] and Ω be an open subset in H and
let C : Ω → 2H be a Hausdorff-continuous set-valued mapping. Asssume that
C has uniformly ρ-prox-regular values. Then, the set-valued mapping given
by (z, x) → ∂dC(z)(x) from Ω × H (endowed with the strong topology) to H
(endowed with the weak topology) is upper semicontinuous, which is equivalent
to the upper semicontinuous of the function (z, x) → σ(∂dC(z)(x), p) for any p ∈
H. Here σ(S, p) denotes the support function associated with S, i.e., σ(S, p) =
sups∈S⟨s, p⟩.

Let us recall the following lemmas that will be used in the sequel.

Lemma 2.3 ([23]). Let Ω be a nonempty set in H. Assume that F : [a, b]×Ω →
2H is a multifunction with nonempty closed values satisfying:

• For every x ∈ Ω, F (·, x) is measurable on [a, b];
• For every t ∈ [a, b], F (t, ·) is (Hausdorff) continuous on Ω.

Then for any measurable function x(·) : [a, b] → Ω, the multifunction F (·, x(·))
is measurable on [a, b].

Lemma 2.4 ([23]). Let G : [a, b] → 2H be a measurable multifunction and
y(·) : [a, b] → H a measurable function. Then for any positive measurable
function r(·) : [a, b] → R+, there exists a measurable selection g(·) of G such
that for almost all t ∈ [a, b]

∥g(t)− y(t)∥ ≤ d
(
y(t), G(t)

)
+ r(t).

IfB is a bounded set ofH, then the Kuratowski’s measure of noncompactness
of B, β(B), is defined by

β(B) = inf{d > 0 : B admits a finite number of sets with diameter

less than d}.
In the following lemma we recall some useful properties for the measure of
noncompactness β. For instance see Proposition 9.1 [14].

Lemma 2.5. Let X be an infinite dimensional real Banach space and D1, D2

be two bounded subsets of X.

(i) β(D1) = 0 ⇔ D1 is relatively compact.
(ii) β(λD1) = |λ|β(D1); λ ∈ R.
(iii) D1 ⊆ D2 ⇒ β(D1) ≤ β(D2).
(iv) β(D1 +D2) ≤ β(D1) + β(D2).
(v) If x0 ∈ X and r is a positive real number, then β(B(x0, r)) = 2r.

Assume that the following hypotheses hold:

(H1) C : H → 2H is a k-Lipschiz set-valued map with nonempty closed
values satisfying
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(a) For each x ∈ H, C(x) is ρ-prox-regular for some fixed ρ ∈]0,+∞];
(b) There exists a compact subset L of H such that C(x) ⊆ L for all

x ∈ H;
(H2) F : [0, b] × Ca × Ca → 2H is a set-valued map with nonempty closed

values satisfying
(i) For each ψ, ϕ ∈ Ca, t 7→ F (t, ψ, ϕ) is measurable;
(ii) There exists a function m(·) ∈ L1([0, b],R+) such that for all t ∈

[0, b] and for all ψ, ϕ1, ϕ2 ∈ Ca

H (F (t, ψ, ϕ1), F (t, ψ, ϕ2)) ≤ m(t)∥ϕ1 − ϕ2∥∞;

(iii) For all bounded subset S of Ca × Ca, there exist three functions
gS(·), pS(·), qS(·) ∈ L1([0, b],R+) such that for all t ∈ [0, b] and
for all (ψ, ϕ) ∈ S

F (t, ψ, ϕ) ∩B (0, gS(t) + pS(t)∥ψ∥∞ + qS(t)∥ϕ∥∞) ̸= ∅.

We established the following result:

Theorem 2.6. If assumptions (H1) and (H2) are satisfied, then for all φ, φ̄ ∈
Ca such that φ̄(0) ∈ C(φ(0)), there exist T > 0, r > 0, M > 0, and a continuous
function x(·) : [−a, T ] → H such that x(·) and ẋ(·) are absolutely continuous
on [0, T ], ẋ(·) is continuous on [−a, T ], and x(·) is a solution of

ẍ(t) ∈ −Np
C(x(t))(ẋ(t)) + F (t, T (t)x, T (t)ẋ) a.e. on [0, T ];

ẋ(t) = φ̄(t), ∀t ∈ [−a, 0];
ẋ(t) ∈ C(x(t)), ∀t ∈ [0, T ];
x(t) = φ(t), ∀t ∈ [−a, 0],

(2.1)

and satisfies

∥ẋ(t)∥≤kM + 2g(t) + 2p(t)(∥φ∥∞ + r) + 2q(t)(∥φ̄∥∞ + r)

for almost all t∈ [0, T ].

3. Proof of the main result

Fix φ, φ̄ ∈ Ca such that φ̄(0) ∈ C(φ(0)). Let r > 0 and g(·), p(·), q(·) ∈
L1([0, b],R+) such that for all (t, ψ, ϕ) ∈ [0, b]×Ba(φ, r)×Ba(φ̄, r)

F (t, ψ, ϕ) ∩B (0, g(t) + p(t)∥ψ∥∞ + q(t)∥ϕ∥∞) ̸= ∅.

The set L is compact in H and so there exists M > 0 such that L ⊂MB. For
simplification, set δ(t) = g(t)+p(t)(∥φ∥∞+r)+q(t)(∥φ̄∥∞+r) for all t ∈ [0, b].
Let T1 > 0 such that

(3.1)

∫ T1

0

(kM + 2δ(s)) ds < inf
{r
2
,
ρ

2

}
.
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For ε > 0 set
(3.2)

η(ε)

= sup

{
γ ∈]0, ε] :

∣∣∣∣∣ t2∫t1
(
kM + 2δ(s)

)
ds

∣∣∣∣∣ < ε,

∥φ(t1)− φ(t2)∥ < ε and ∥φ̄(t1)− φ̄(t2)∥ < ε if |t1 − t2| < γ

}
.

Put

(3.3) T = min

{
T1,

1

2
η(
r

2
), b,

r

2M

}
.

We will used the following lemma to prove main result.

Lemma 3.1. If assumptions (H1) and (H2) are satisfied, then for all n ∈ N∗

and for all y(·) ∈ L1([0, T ],H), there exist two continuous mappings xn(·) :
[−a, T ] → H, un(·) : [−a, T ] → H, a step functions θn(·), θ̄n(·) : [0, T ] → [0, T ]
and fn(·) ∈ L1([0, T ],H) such that

(a) fn(t) ∈ F (t, T (θn(t))xn, T (θn(t))un)∩B(0, g(t)+p(t)∥T (θn(t))xn∥∞+
q(t)∥T (θn(t))un∥∞), un(θ̄n(t)) ∈ C(xn(θ̄n(t))) for all t ∈ [0, T ];

(b) ∥fn(t) − y(t)∥ ≤ d(y(t), F (t, T (θn(t))xn, T (θn(t))un)) +
1
n for all t ∈

[0, T ];
(c) (u̇n(t)− fn(t)) ∈ −NC(xn(θ̄n(t)))(un(θ̄n(t))) for almost all t ∈ [0, T ];

(d) ∥u̇n(t)− fn(t)∥ ≤ kM + δ(t) for almost every t ∈ [0, T ].

Proof. Fix n ∈ N∗ and let y(·) : [0, T ] → H be a measurable function. Consider
a sequence (Pn)n of subdivisions of [0, T ] :

Pn = {0 = tn0 < tn1 < · · · < tni < · · · < tn2n = T} ,
where tni = i T

2n , 0 < i < 2n. Let us define the sequences (xn)n and (un)n
of approximate solutions as follows. Set xn(s) = φ(s) and un(s) = φ̄(s) for
all s ∈ [−a, 0]. Put xn0 = φ(0) and un0 = φ̄(0) ∈ C(xn(t

n
0 )). By Lemma 2.3,

t 7→ F (t, T (0)xn, T (0)un) is a measurable multifunction, then by Theorem
III.40 and Theorem III.41 in [11]

t 7→ F (t, T (0)xn, T (0)un) ∩B (0, g(t) + p(t)∥T (0)xn∥∞ + q(t)∥T (0)un∥∞)

is a measurable multifunction. In view of Lemma 2.4, there exists a function
fn0 ∈ L1([tn0 , t

n
1 ],H) such that

fn0 (t) ∈ F (t, T (0)xn, T (0)un) ∩B (0, g(t) + p(t)∥T (0)xn∥∞ + q(t)∥T (0)un∥∞)

and

∥fn0 (t)− y(t)∥ ≤ d
(
y(t), F (t, T (0)xn, T (0)un)

)
+

1

n
for all t ∈ [tn0 , t

n
1 ]. Set

xn(t) = xn0 + (t− tn0 )u
n
0 , ∀t ∈ [tn0 , t

n
1 ]
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and put xn(t
n
1 ) = xn1 . By (H1) and (3.1), we have

dC(xn(tn1 ))

(
un0 +

∫ tn1

tn0

fn0 (s)ds

)

≤ H(C(xn(t
n
1 )), C(xn(t

n
0 ))) +

∫ tn1

tn0

∥fn0 (s)∥ds

≤ k∥xn(tn1 )− xn(t
n
0 )∥+

∫ tn1

tn0

∥fn0 (s)∥ds

≤ k

∫ tn1

tn0

∥un0∥ds+
∫ tn1

tn0

∥fn0 (s)∥ds

≤
∫ tn1

tn0

(kM + g(s) + p(s)∥φ∥∞ + q(s)∥φ̄∥∞) ds

≤ ρ

2
.

As C has uniformly ρ-prox-regular values, by Proposition 2.1, we have

ProjC(xn(tn1 ))

(
un0 +

∫ tn1

tn0

fn0 (s)ds

)
̸= ∅.

Then, one can choose a point un1 in

ProjC(xn(tn1 ))

(
un0 +

∫ tn1

tn0

fn0 (s)ds

)
.

Note that un1 ∈ C(xn(t
n
1 )) and∥∥∥∥∥un1 −

(
un0 +

∫ tn1

tn0

fn0 (s)ds

)∥∥∥∥∥
= dC(xn(tn1 ))

(
un0 +

∫ tn1

tn0

fn0 (s)ds

)

≤
∫ tn1

tn0

(kM + g(s) + p(s)∥φ∥∞ + q(s)∥φ̄∥∞) ds.

On the other hand, by (3.1), we have

∥un1 − φ̄(0)∥

≤

∥∥∥∥∥un1 −

(
un0 +

∫ tn1

tn0

fn0 (s)ds

)∥∥∥∥∥+
∫ tn1

tn0

∥fn0 (s)∥ds

≤
∫ tn1

tn0

(kM + 2g(s) + 2p(s)∥φ∥∞ + 2q(s)∥φ̄∥∞) ds

≤ r

2
.
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Then un1 ∈ B(φ̄(0), r). Now, set

un(t) = un0 +
α(t)− α(tn0 )

α(tn1 )− α(tn0 )

(
un1 − un0 −

∫ tn1

tn0

fn0 (s)ds

)
+

∫ t

tn0

fn0 (s)ds

for all t ∈ [tn0 , t
n
1 ], where

α(t) =

∫ t

0

(kM + δ(s))ds, ∀t ∈ [0, T ].

So for all t ∈ [tn0 , t
n
1 ]

∥un(t)− φ̄(0)∥

≤ α(t)− α(tn0 )

α(tn1 )− α(tn0 )

∥∥∥∥∥un1 − un0 −
∫ tn1

tn0

fn0 (s)ds

∥∥∥∥∥+
∫ t

tn0

∥fn0 (s)∥ds

≤ α(t)− α(tn0 ) +

∫ t

tn0

δ(s)ds

≤
∫ t

tn0

(kM + 2δ(s))ds

≤ r

2

and

∥xn(t)− φ(0)∥ =

∥∥∥∥∥
∫ t

tn0

un0ds

∥∥∥∥∥ ≤
∫ t

tn0

∥un0∥ds ≤
∫ t

tn0

Mds ≤ r

2

which equivalent to un(t) ∈ B(φ̄(0), r2 ) and xn(t) ∈ B(φ(0), r2 ) for all t ∈
[tn0 , t

n
1 ]. Now, we have to estimate ∥(T (tn1 )xn)(s) − φ(s)∥ and ∥(T (tn1 )un)(s) −

φ̄(s)∥ for each s ∈ [−a, 0]. If −tn1 ≤ s ≤ 0, then tn1 + s ∈ [tn0 , t
n
1 ]. Thus, by the

fact that | s | ≤ tn1 ≤ T < η( r2 ), we have

∥(T (tn1 )xn)(s)− φ(s)∥ = ∥xn(tn1 + s)− φ(s)∥
≤ ∥xn(tn1 + s)− φ(0)∥+ ∥φ(s)− φ(0)∥
≤ r

and

∥(T (tn1 )un)(s)− φ̄(s)∥ = ∥un(tn1 + s)− φ̄(s)∥
≤ ∥un(tn1 + s)− φ̄(0)∥+ ∥φ̄(s)− φ̄(0)∥
≤ r.

If −a ≤ s ≤ −tn1 , then tn1 + s ∈ [−a, 0]. So
∥(T (tn1 )xn)(s)− φ(s)∥ = ∥φ(tn1 + s)− φ(s)∥ ≤ r

and

∥(T (tn1 )un)(s)− φ̄(s)∥ = ∥φ̄(tn1 + s)− φ̄(s)∥ ≤ r.

Therefore, T (tn1 )xn ∈ Ba(φ, r) and T (t
n
1 )un ∈ Ba(φ̄, r).
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We reiterate this process for constructing sequences (fni (·))i, (xni )i, (uni )i sat-
isfying, for all 0 ≤ i ≤ 2n − 1 and for all t ∈ [tni , t

n
i+1], the following assertions:

fni (t) ∈ F (t, T (tni )xn, T (t
n
i )un)

∩ B (0, g(t) + p(t)∥T (tni )xn∥∞ + q(t)∥T (tni )un∥∞) ,

un0 ∈ C(xn(t
n
0 )), u

n
i+1 ∈ C(xn(t

n
i+1)) ∩B(φ̄(0), r),

xn(t) ∈ B(φ(0),
r

2
), T (tni )xn ∈ Ba(φ, r),

un(t) ∈ B(φ̄(0),
r

2
), T (tni )un ∈ Ba(φ̄, r),

∥fni (t)− y(t)∥ ≤ d (y(t), F (t, T (tni )xn, T (t
n
i )un)) +

1

n
,

(3.4) uni+1 ∈ ProjC(xn(tni+1))

(
uni +

∫ tni+1

tni

fni (s)ds

)
,

(3.5)

∥∥∥∥∥uni+1 −

(
uni +

∫ tni+1

tni

fni (s)ds

)∥∥∥∥∥ ≤
∫ tni+1

tni

(kM + δ(s))ds,

un(t) = uni +
α(t)− α(tni )

α(tni+1)− α(tni )

(
uni+1 − uni −

∫ tni+1

tni

fni (s)ds

)
+

∫ t

tni

fni (s)ds.

xn(t) = xni + (t− tni )u
n
i .

Now, we define the functions θn(·), θ̄n(·) : [0, T ] → [0, T ] and fn(·) ∈
L1([0, T ], H) by setting for all t ∈ [tni , t

n
i+1[

θn(t) = tni , θn(T ) = T, fn(t) = fni (t), fn(T ) = fn2n−1(T ),

and for all t ∈]tni , tni+1]

θ̄n(t) = tni+1, θ̄n(0) = 0.

At this stage, the assertions (a)-(b) in Lemma 3.1 are satisfied. Next, we claim
that xn(·) and un(·) are absolutely continuous. Indeed, for all 0 ≤ i ≤ 2n − 1
and for all t and s in [tni , t

n
i+1], s < t, one has

xn(t)− xn(s) = (t− s)uni

and

un(t)− un(s) =
α(t)− α(s)

α(tni+1)− α(tni )

(
uni+1 − uni −

∫ tni+1

tni

fni (s)ds

)
+

∫ t

s

fni (τ)dτ.

Then, by (3.5) we get

∥xn(t)− xn(s)∥ ≤ (t− s)M(3.6)
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and

(3.7)

∥un(t)− un(s)∥

=
α(t)− α(s)

α(tni+1)− α(tni )

∥∥∥∥∥uni+1 − uni −
∫ tni+1

tni

fni (s)ds

∥∥∥∥∥+
∫ t

s

δ(τ)dτ

≤
∫ t

s

(kM + 2δ(τ))dτ.

By addition, this last inequalities hold for all s, t ∈ [0, T ] with s < t. Hence
xn(·) and un(·) are absolutely continuous. Remark that for all 0 ≤ i ≤ 2n − 1
and for almost every t in [tni , t

n
i+1],

(3.8) u̇n(t) =
α̇(t)

α(tni+1)− α(tni )

(
uni+1 − uni −

∫ tni+1

tni

fni (s)ds

)
+ fn(t).

Then, by (3.5) we obtain for almost every t ∈ [0, T ]

∥u̇n(t)− fn(t)∥ ≤ kM + δ(t).

Also by construction and the relation (3.4), we have for almost every t ∈ [0, T ](
u̇n(t)− fn(t)

)
∈ −NC(xn(θ̄n(t)))(un(θ̄n(t))).

Then the proof is complete. □

Proof of Theorem 2.6. In view of Lemma 3.1, we can define inductively
sequences (fn(·))n≥1⊂L1([0, T ],H), (xn(·))n≥1, (un(·))n≥1⊂C([−a, T ],H) and
(θn(·))n≥1, (θ̄n(·))n≥1 ⊂ S([0, T ], [0, T ]); where S([0, T ], [0, T ]) denotes the space
of step functions from [0, T ] into [0, T ]; such that

(1) fn(t) ∈ F (t, T (θn(t))xn, T (θn(t))un)∩B(0, g(t)+p(t)∥T (θn(t))xn∥∞+
q(t)∥T (θn(t))un∥∞), un(θ̄n(t)) ∈ C(xn(θ̄n(t))) for all t ∈ [0, T ];

(2) ∥fn+1(t)− fn(t)∥ ≤ d
(
fn(t), F (t, T (θn+1(t))xn+1, T (θn+1(t))un+1)

)
+

1
n+1 for all t ∈ [0, T ];

(3) (u̇n(t)− fn(t)) ∈ −NC(xn(θ̄n(t)))(un(θ̄n(t))) for almost all t ∈ [0, T ];

(4) ∥u̇n(t)− fn(t)∥ ≤ kM + δ(t) for almost every t ∈ [0, T ].

Firstly, note that

xn(t) = x0 +

∫ t

0

ūn(s)ds, ∀t ∈ [0, T ],

where ūn(t) = uni ∈ L for all t ∈ [tni , t
n
i+1[ and for all 0 ≤ i ≤ 2n − 1. Then

for all t ∈ [0, T ], xn(t) ∈ x0 + [0, T ]L which is compact. Since ∥ẋn(t)∥ ≤ M,
for almost every t ∈ [0, T ], by Arzela-Ascoli’s Theorem (see [2]), we can select
a subsequence, again denoted by (xn(·))n which converges uniformly to an
absolutely continuous function x(·) on [0, T ], moreover ẋn(·) converges weakly
to ẋ(·) in L1([0, T ],H). Also, since all functions xn(·) agree with φ(·) on [−a, 0],
we can obviously say that xn(·) converges uniformly to x(·) on [−a, T ], if we
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extend x(·) in such a way that x(·) ≡ φ(·) on [−a, 0]. Secondly, from (4) we
deduce

(3.9) ∥u̇n(t)∥ ≤ kM + 2δ(t)

for almost every t ∈ [0, T ]. In order to apply Arzela-Ascoli’s Theorem we are
going to show that for every t ∈ [0, T ] the set Z(t) = {un(t) : n ≥ 1} is
relatively compact in H. By construction we have for all n ≥ 1 and all t ∈ [0, T ],
un(θ̄n(t)) ∈ C(xn(θ̄n(t))) ⊂ L. Thus for all t ∈ [0, T ] the set {un(θ̄n(t)) : n ≥ 1}
is relatively compact in H. Now, for all t ∈ [0, T ]

β(Z(t)) = β {un(t) : n ≥ 1}
= β

{
un(t)− un(θ̄n(t)) + un(θ̄n(t)) : n ≥ 1

}
.

From (iv) of Lemma 2.5 we get

β(Z(t)) ≤ β
{
un(t)− un(θ̄n(t)) : n ≥ 1

}
+ β

{
un(θ̄n(t)) : n ≥ 1

}
.

Since the set {un(θ̄n(t)) : n ≥ 1} is relatively compact in H, by (i) of Lemma

2.5, β
{
un(θ̄n(t)) : n ≥ 1

}
= 0. Then

β(Z(t)) ≤ β
{
un(t)− un(θ̄n(t)) : n ≥ 1

}
≤ β

{∫ θ̄n(t)

t

u̇n(s)ds : n ≥ 1

}
.

By relation (3.9) and (v) of Lemma 2.5 we obtain

β(Z(t)) ≤ β

{
B

(
0,

∫ θ̄n(t)

t

(kM + 2δ(s))ds

)}

= 2

∫ θ̄n(t)

t

(kM + 2δ(s))ds.

Since the right term of the above inequality converges to 0 as n→ ∞, β(Z(t)) =
0. Hence Z(t) is relatively compact in H. By Arzela-Ascoli’s Theorem, we can
select a subsequence, again denoted by (un(·))n which converges uniformly
to an absolutely continuous function u(·) on [0, T ], moreover u̇n(·) converges
weakly to u̇(·) in L1([0, T ],H). Also, since all functions un(·) agree with φ̄(·) on
[−a, 0], we can say, as above, that un(·) converges uniformly to u(·) on [−a, T ].
Additionally, observe that xn(θ̄n(·)) converges uniformly to x(·) and un(θ̄n(·))
converges uniformly to u(·) on [0, T ]. Indeed, by (3.6) and (3.7) for all t ∈ [0, T ],
we have

∥xn(θ̄n(t))− x(t)∥ ≤ ∥xn(θ̄n(t))− xn(t)∥+ ∥xn(t)− x(t)∥
≤ (t− θ̄n(t))M + ∥xn(t)− x(t)∥
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and

∥un(θ̄n(t))− u(t)∥ ≤ ∥un(θ̄n(t))− un(t)∥+ ∥un(t)− u(t)∥

≤
∫ θ̄n(t)

t

(kM + 2δ(s))ds+ ∥un(t)− u(t)∥.

The right term of the above inequalities converge to 0, it follows that xn(θ̄n(·))
converges uniformly to x(·) and un(θ̄n(·)) converges uniformly to u(·) on [0, T ].
Therefore, for all t ∈ [0, T ], there exists 0 ≤ i ≤ 2n − 1 such that t ∈ [tni , t

n
i+1].

By (H1) and (3.6), we have

d(un(t), C(x(t))) ≤ ∥un(t)− un(t
n
i )∥+ d(un(t

n
i ), C(x(t)))

≤ ∥un(t)− un(t
n
i )∥+H(C(xn(t

n
i )), C(x(t)))

≤
∫ t

tni

(kM + 2δ(τ))dτ + k∥xn(tni )− x(t)∥.

The right term of the above inequality converges to 0 if n → +∞. Then we
conclude that u(t) ∈ C(x(t)) for all t ∈ [0, T ].

Claim 3.2. ẋ(t) = u(t) for almost all t ∈ [0, T ].

Proof. Let t ∈ [0, T ] such that ẋn(t) and ẋ(t) exist. There exists 0 ≤ i ≤ 2n−1
such that t ∈ [tni , t

n
i+1]. By construction we have

∥ẋn(t)− un(t)∥

≤

∥∥∥∥∥ α(t)− α(tni )

α(tni+1)− α(tni )

(
uni+1 − uni −

∫ tni+1

tni

fni (s)ds

)∥∥∥∥∥+
∥∥∥∥∥
∫ t

tni

fni (s)ds

∥∥∥∥∥
≤ α(t)− α(tni ) + +

∫ t

tni

δ(s)ds

≤
∫ t

tni

(kM + 2δ(s))ds.

Let ε > 0. Since T
2n converges to 0, there exists n0 ∈ N such that for all n ≥ n0,

|tni − t| ≤ T
2n < η( ε2 ). Hence by (3.2)

∥ẋn(t)− un(t)∥ ≤ ε, ∀n ≥ n0.

Now, since

∥ẋn(t)− u(t)∥ ≤ ∥ẋn(t)− un(t)∥+ ∥un(t)− u(t)∥,

we deduce that ẋn(·) converges uniformly to u(·), so ẋ(t) = u(t) and ẍ(t) = u̇(t)
for almost all t ∈ [0, T ]. □

Claim 3.3. T (θn(t))xn converges to T (t)x and T (θn(t))un converges to T (t)u
in Ca.



ON SECOND ORDER NONCONVEX SWEEPING PROCESS 527

Proof. Let us denote the modulus continuity of a function ψ(·) defined on
interval I of R by

ω(ψ(·), I, η) := sup {∥ψ(t)− ψ(s)∥ : s, t ∈ I, | s− t |< η} .
Let ε > 0 and let t, t′ ∈ [0, T ], assume that 0 ≤ t′ − t < η( ε2 ). By (3.2),

(3.6) and (3.7), we have

∥xn(t)− xn(t
′)∥ ≤ (t′ − t)M ≤ ε

2

and

∥un(t)− un(t
′)∥ ≤

∫ t′

t

(kM + 2δ(s))ds ≤ ε

2
.

Hence

ω
(
xn(·), [0, T ], η

(ε
2

))
≤ ε

2
and ω

(
un(·), [0, T ], η

(ε
2

))
≤ ε

2
.

Also for t, t′ ∈ [−a, 0] such that | t′ − t |< η( ε2 ), by (3.2) we have

∥φ(t)− φ(t′)∥ <
ε

2
and ∥φ̄(t)− φ̄(t′)∥ <

ε

2
.

Then

ω
(
φ(·), [−a, 0], η

(ε
2

))
≤ ε

2
and ω

(
φ̄(·), [−a, 0], η

(ε
2

))
≤ ε

2
.

Now, let t ∈ [0, T ], since θn(t) converges to t, there exists n0 ∈ N such that for
all n ≥ n0, |θn(t)− t| < η( ε2 ). Then, for all n ≥ n0

∥T (θn(t))xn − T (t)xn∥∞
= sup

−a≤s≤0
∥xn(θn(t) + s)− xn(t+ s)∥

≤ ω
(
xn(·), [−a, T ], η

(ε
2

))
≤ ω

(
φ(·), [−a, 0], η

(ε
2

))
+ ω

(
xn(·), [0, T ], η

(ε
2

))
≤ ε

and

∥T (θn(t))un − T (t)un∥∞
= sup

−a≤s≤0
∥un(θn(t) + s)− un(t+ s)∥

≤ ω
(
un(·), [−a, T ], η

(ε
2

))
≤ ω

(
φ(·), [−a, 0], η

(ε
2

))
+ ω

(
un(·), [0, T ], η

(ε
2

))
≤ ε,

hence ∥T (θn(t))xn − T (t)xn∥∞ and ∥T (θn(t))un − T (t)un∥∞ converge to 0 as
n → +∞. Therefore, since the uniform convergence of xn(·) to x(·) and the
uniform convergence of un(·) to u(·) on [−a, T ] imply that T (t)xn converges
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to T (t)x and T (t)un converges to T (t)u uniformly on [−a, 0], we deduce that
T (θn(t))xn converges to T (t)x and T (θn(t))un converges to T (t)u in Ca. □

Porposition 3.4. x(·) is a solution of (2.1).

Proof. Let t ∈ [0, T ], from (1) and (2) we deduce

(3.10)

∥fn+1(t)− fn(t)∥
≤ H(F (t, T (θn(t))xn, T (θn(t))un), F (t, T (θn+1(t))xn+1,

T (θn+1(t))un+1)) +
1

n+ 1

≤ m(t)∥T (θn(t))un − T (θn+1(t))un+1∥∞ +
1

n+ 1
.

By Claim 3.3, ∥T (θn(t))un − T (θn+1(t))un+1∥∞ converges to 0, then the right
term of the relation (3.10) converges to 0. Hence (fn(t))n≥1 is a Cauchy se-
quence and fn(t) converges to f(t). Moreover, observe that by (1),

d
(
f(t), F (t, T (t)x, T (t)u)

)
≤ ∥f(t)− fn(t)∥+H(F (t, T (θn(t))xn, T (θn(t))un), F (t, T (t)x, T (t)u))

≤ ∥f(t)− fn(t)∥+m(t)∥T (θn(t))un − T (t)u∥∞.

Since fn(t) converges to f(t) and by Claim 3.3, the last term converges to 0.
So that f(t) ∈ F (t, T (t)x, T (t)u) for all t ∈ [0, T ]. Now, the weak convergence
of u̇n(·) to u̇(·) in L1([0, T ], H) and the Mazur’s Lemma entail

u̇(t)− f(t) ∈
∩
n

c̄o {u̇m(t)− fm(t) : m ≥ n} for a.e. on [0, T ].

Fix any t ∈ [0, T ] and y ∈ H, we have

⟨y, u̇(t)− f(t)⟩ ≤ inf
n

sup
k≥n

⟨y, u̇k(t)− fk(t)⟩.

By (3) and (4), one has

(u̇n(t)− fn(t)) ∈ −NC(xn(θ̄n(t)))(un(θ̄n(t))) ∩ γ(t)B,

where γ(t) = kM + δ(t). Hence, by Proposition 2.1 we get

(u̇n(t)− fn(t)) ∈ −γ(t)∂dC(xn(θ̄n(t)))(un(θ̄n(t))).

In view of Proposition 2.2, we deduce

⟨y, u̇(t)− f(t)⟩

≤ γ(t) lim sup
n→∞

σ
(
y,−∂dC(xn(θ̄n(t)))(un(θ̄n(t)))

)
≤ γ(t)σ

(
y,−∂dC(x(t))(u(t))

)
.

So, the convexity and the closedness of the set ∂dC(x(t))(u(t)) ensure

(u̇(t)− f(t)) ∈ −γ(t)∂dC(x(t))(u(t)) ⊂ −NC(x(t))(u(t)).
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Finally, we have

u̇(t) ∈ −NC(x(t))(u(t)) + F (t, T (t)x, T (t)u)

and u(t) ∈ C(x(t)). By Claim 3.2, we get

ẍ(t) ∈ −NC(x(t))(ẋ(t)) + F (t, T (t)x, T (t)ẋ)

and ẋ(t) ∈ C(x(t)). The proof is complete. □
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