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EVOLUTION EQUATIONS ASSOCIATED WITH

TIME–DEPENDENT SUBDIFFERENTIALS

Kiyeon Shin and Jingyo Jeong

Abstract. In this paper we study the solvability of parabolic equations
governed by the difference of time dependent subdifferential and time
independent subdifferential in reflexive Banach spaces.

1. Introduction

Let X and X∗ be a real Banach space and its dual space, respectively, and
let H be a Hilbert space whose dual space H∗ is identified with itself such that
X ↪→ H ≡ H∗ ↪→ X∗ with continuous and densely defined canonical injections.

The main purpose of this paper is to study the solvability of the following
abstract Cauchy problem in X −X∗ setting:

(CP)


du

dt
(t) + ∂φ(t, u(t))− ∂ψ(u(t)) ∋ f(t) in X∗, 0 < t < T

u(0) = u0,

where ∂φ(t, ·), ∂ψ : X → 2X
∗
are the subdifferentials of a time-dependent

lower semicontinous convex function φ(t, ·) : X → (−∞,∞] with φ(t, ·) ̸≡ +∞
for t ∈ (0, T ) and of a lower semicontinous convex function ψ : X → (−∞,∞]
with ψ ̸≡ +∞ , respectively. And f : (0, T ) → X∗ is given.

(CP) is studied by Koi-Watanabe [9], Ishii [7] and Ôtani [11] in the Hilbert
space framework for the existence and the asymptotic behavior of strong solu-
tions. Recently, Akagi and Ôtani [3] has considered the autonomous problem
under the subcritical growth condition to get a local weak solution in reflexive
Banach space.

For the case of time dependent φ(t, ·), Ôtani [11], Kenmochi [8] proved the
existence of a strong solutions on [0, T ] of the Cauchy problem for the equation
du(t)/dt+ ∂φ(t, u(t)) + B(t, u(t)) ∋ f(t) in Hilbert setting, i.e., X = X∗ = H
by applying nonlinear interpolation theory.
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Recently, Akagi and Ôtani [3] considered the existence of strong solution
of Cauchy problem for du(t)/dt + ∂φ1(u(t)) − ∂φ2(u(t)) ∋ f(t) in X–X∗ set-
ting which should remedy the deficiency in Hilbert space setting for applying
our abstract results to the PDE problems. With their results, we prove the
existence of strong solutions of (CP) on [0, T ] by imposing a t-smoothness con-
dition on φ(t, ·) in addition to the similar assumptions as in [3]. The method
of our proof relies on some approximations of (CP) to obtain the approximate
solutions which converges.

This paper is composed of three sections. In the next section, we summarized
the relevant material on subdifferential operators. Section 3 is devoted to state
our main results on the existence of strong solutions for (CP).

2. Preliminaries

Let X be a real reflexive Banach space and let X∗ be its dual. We assume
that there exists a real Hilbert space H whose dual space H∗ is identified with
H such that X ⊂ H ≡ H∗ ⊂ X∗, where the natural injection from X into H
as well as that from H∗ into X∗ are densely defined and continuous.

To formulate our results, we need the notion of subdifferential operators
from a Banach space X into its dual X∗ defined below.

Let Φ(X) be the set of all proper lower semicontinuous convex functions
φ from X into (−∞,+∞], where “proper” means that the effective domain
D(φ) of φ defined by D(φ) = {u ∈ X : φ(u) < +∞} is not empty. The
subdifferential ∂Xφ(u) of φ at u in X is defined by

∂Xφ(u) = {f ∈ X∗ : φ(v)− φ(u) ≥X∗ ⟨f, v − u⟩X for all v ∈ D(φ)}

with domain D(∂Xφ) = {u ∈ D(φ) : ∂Xφ(u) ̸= 0}, where X∗⟨·, ·⟩X denote the
duality pairing between X and X∗. For simplicity of notation, we write ∂φ and
⟨·, ·⟩ instead of ∂Xφ and X∗⟨·, ·⟩X , respectively, if no confusion arises. It is well
known that the graph of every subdifferential operator ∂φ becomes maximal
monotone in X × X∗ (see Barbu [5] for more details of maximal monotone
operators).

In particular, if X is a Hilbert space H and φ ∈ Φ(H), then

∂Hφ(u) = {f ∈ H : φ(v)− φ(u) ≥ (f, v − u)H for all v ∈ D(φ)},

where (·, ·)H denotes the inner product of H. Furthermore, the Moreau-Yosida
regularization φλ of φ is defined as follows:

φλ(u) := inf
v∈H

{ 1

2λ
|u− v|2H + φ(u)

}
, ∀u ∈ H, ∀λ > 0.

The following proposition provides some useful properties of Moreau-Yosida
regularizations.
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Proposition 2.1. Let φ ∈ Φ(H). Then φλ becomes a Fréchet differentiable
convex function from H into R and is characterized by

φλ(u) =
1

2λ
|u− Jλu|2H + φ(Jλu) =

λ

2
|(∂Hφ)λ(u)|2H + φ(Jλu),

where (∂Hφ)λ and Jλ are the Yosida approximation and the resolvent of ∂Hφ,
respectively, i.e., Jλ = (I + λ∂Hφ)

−1 and (∂Hφ)λ = (I − Jλ)/λ. More-
over, ∂H(φλ) = (∂Hφ)λ, where ∂H(φλ) denotes the subdifferential (Fréchet
derivative) of φλ, φ(Jλu) ≤ φλ(u) ≤ φ(u) for all u ∈ H, λ > 0 and φλ(u) →
φ(u) as λ→ 0 for all u ∈ H.

Proposition 2.2. Let φ ∈ Φ(H) and suppose that u ∈ W 1,2(0, T ;H), u(t) ∈
D(∂Hφ) for a.e. t ∈ (0, T ) and that there exists h ∈ L2(0, T ;H) such that
h(t) ∈ ∂Hφ(u(t)) for a.e. t ∈ (0, T ). Then the function t 7→ φ(u(t)) is abso-
lutely continuous on [0, T ] and the following holds;

d

dt
φ(u(t)) =

(
h(t),

du(t)

dt

)
H
, ∀h(t) ∈ ∂Hφ(u(t)) for a.e. t ∈ (0, T ).

3. Main result

In the paper, we are concerned with strong solution of (CP) in the following
sense.

Definition. A function u ∈ C([0, T ];X∗) is said to be a strong solution of
(CP) on [0, T ], if the following conditions are satisfied;

(1) u(t) is a X∗-valued absolutely continuous function on [0, T ].
(2) u(t) → u0 strongly in H as t→ 0+.
(3) u(t) ∈ D(∂φ(t, ·)) ∩D(∂ψ) for a.e. t ∈ (0, T ). And there exist g(t) ∈

∂ψ(u(t)) and h(t) ∈ ∂φ(t, u(t)) satisfying;

du(t)

dt
+ h(t)− g(t) = f(t), in X∗ for a.e. t ∈ (0, T ).

Prior to present our main result, we give the following assumptions for p ∈
(1,+∞).

(A.1) There exist functions a, b ∈W 1,∞(0, T ) and a constant δ > 0 such that
for every t0 ∈ [0, T ] and z0 ∈ D(φ(t0, ·)), we can take a function

z : Iδ(t0) := [t0 − δ, t0 + δ] ∩ [0, T ] → X

satisfying
(1) |z(t)− z0|X ≤ |a(t)− a(t0)|(φ(t0, z0) + 1)1/p,
(2) φ(t, z(t)) ≤ φ(t0, z0) + |b(t)− b(t0)|(φ(t0, z0) + 1) ∀ t ∈ Iδ(t0).

(A.2) There exists a constant C1 such that |u|pX ≤ C1(φλ(t, u) + |u|2H) for all
u ∈ D(φ(t, ·)), t ∈ [0, T ] and for sufficiently small λ > 0.

(A.3) There exists a constant C2 such that |ζ|p
′

X∗ ≤ C2(φλ(t, u) + 1) for all
ζ ∈ ∂φ(t, u), t ∈ [0, T ] and for sufficiently small λ > 0, where p′ is the
conjugate dual of p.
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(A.4) D(ψ) ⊂ D(∂φ(t, ·) for all t ∈ [0, T ] and there exists a constant C3 such
that ψ(u) ≤ C3(φλ(t, u)+1) for sufficiently small λ > 0, where φλ(t, u)
is the Yosida approximation of φ(t, u).

Now, our main results are stated as follows.

Theorem 3.1. Assume that (A.1)–(A.4) hold. Then for all u0 ∈ D(φ(0, ·)
and f ∈ W 1,p′

(0, T ;X∗) ∩ L2(0, T ;H), (CP) has a strong solution u on [0, T ]
satisfying:

(1)


u ∈ Cw([0, T ];X),

u(t) ∈ D(∂φ(t, ·)) ∩D(∂ψ) for a.e. t ∈ (0, T ),

h, g ∈ Lp′
(0, T ;X∗),

where h, g are the sections of ∂φ(t, ·), ∂ψ, respectively. And Cw([0, T ];X)
denotes the set of all X-valued weakly continuous functions on [0, T ].

For the proof of Theorem 3.1, we first of all introduce suitable approximation
problems for (CP) in the Hilbert space H. To this end, we define the extension
φ̃(t, ·) of φ(t, ·) on H by

φ̃(t, u) =

{
φ(t, u), if u ∈ X,
+∞, if u ∈ H \X.

Then, by (A.2), we can easily show that φ̃(t, ·) ∈ Φ(H).
Now, we consider our approximation problems for (CP) as follows;

(CP)λ


duλ
dt

(t) + ∂H φ̃λ(t, uλ(t))− ∂H ψ̃(uλ(t)) ∋ fλ(t)

in H, 0 < t < T

uλ(0) = u0,

where fλ belongs to C1([0, T ];H) such that fλ → f strongly inW 1,p′
(0, T ;X∗)

as λ → 0+. Also, ψ̃ is the extension of ψ on H and ∂H φ̃λ(t, ·) denotes the
Yosida approximation of ∂H φ̃(t, ·).

In considering (CP)λ, it is essential to find some properties of ∂H φ̃λ. We
prepare the next lemma for this.

Lemma 3.2 ([2]). Let φ(t, ·) ∈ Φ(X) for t ∈ [0, T ] and u ∈ X. Suppose (A.1)
holds. Then, for t, s ∈ [0, T ] with |t− s| < δ, where δ is given (A.1),

|Jλ(t, u)− Jλ(s, u)|2H
≤ 2|a(t)− a(s)|

(
|u− Jλ(t, u)|X∗{φ(s, Jλ(s, u)) + 1}1/p

+|u− Jλ(s, u)|X∗{φ(t, Jλ(t, u)) + 1}1/p
)

+2λ|b(t)− b(s)|{φ(t, Jλ(t, u)) + φ(s, Jλ(s, u)) + 2},

where Jλ(t, ·) denotes the resolvent of ∂H φ̃(t, ·).
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Since ∂H φ̃λ(t, ·) is Lipschitz continuous on H and ∂H φ̃λ(·, u) is continuous
on [0, T ] by the above lemma, it is well known (see Brézis [6], Theorem 1.4)
that there exists a unique strong solution uλ on (CP)λ on [0, T ] satisfying{

uλ ∈W 1,2(0, T ;H), uλ(t) ∈ D(∂H ψ̃), ∀t ∈ (0, T ),

t 7→ ψ̃(uλ(t)), φ̃λ(t, uλ(t)) is absolutely continuous on [0, T ].

Now, we are going to establish a couple of a priori estimates for the solution
uλ ∈W 1,2(0, T ;H) of (CP)λ (λ > 0) in the following lemmas.

Lemma 3.3. There exists a constant K1 such that

sup
t∈[0,T ]

|uλ(t)|H ≤ K1,(2)

sup
t∈[0,T ]

φ̃λ(t, uλ(t)) ≤ K1,(3) ∫ T

0

|duλ
dτ

(τ)|2dτ ≤ K1,(4)

sup
t∈[0,T ]

|uλ(t)|X ≤ K1.(5)

Proof. Multiplying (CP)λ by duλ(t)/dt,(
duλ
dt

(t),
duλ
dt

(t)

)
H

+

(
∂H φ̃λ(t, uλ(t)),

duλ
dt

(t)

)
H

−
(
∂H ψ̃(uλ(t)),

duλ
dt

(t)

)
H

=

(
fλ(t),

duλ
dt

(t)

)
H

.

Then, by Proposition 2.2,∣∣∣∣duλdt (t)

∣∣∣∣2
H

+
d

dt
φ̃λ(t, uλ(t))−

d

dt
ψ̃(uλ(t))

=

(
fλ(t),

duλ
dt

(t)

)
H

+
d

dt
φ̃λ(t, uλ(t))−

(
∂H φ̃λ(t, uλ(t)),

duλ
dt

(t)

)
H

.

Moreover, by (A.1) and Akagi [4],∣∣∣∣(∂H φ̃λ(t, uλ(t)),
duλ
dt

(t)

)
H

− d

dt
φ̃λ(t, uλ(t))

∣∣∣∣
≤ |ȧ(t)| |∂H φ̃λ(t, uλ(t))|X∗ (φ̃λ(t, uλ(t)) + 1)1/p + |ḃ(t)| (φ̃λ(t, uλ(t)) + 1).

Hence, with (A.3) we have∣∣∣∣(∂H φ̃λ(t, uλ(t)),
duλ
dt

(t)

)
H

− d

dt
φ̃λ(t, uλ(t))

∣∣∣∣
≤
(
C

1/p′

2 |ȧ(t)|+ |ḃ(t)|
)
(φ̃λ(t, uλ(t)) + 1).
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Applying this to the above inequality, we get∣∣∣∣duλdt (t)

∣∣∣∣2
H

+
d

dt
φ̃λ(t, uλ(t))−

d

dt
ψ̃(uλ(t))

≤
(
fλ(t),

duλ
dt

(t)

)
H

+
(
C

1/p′

2 |ȧ(t)|+ |ḃ(t)|
)
(φ̃λ(t, uλ(t)) + 1).

Now, we integrate it over (0, t) to have∫ t

0

∣∣∣∣duλdτ (τ)

∣∣∣∣2
H

dτ + φ̃λ(t, uλ(t))

≤ φ̃λ(0, u0) + ψ̃(uλ(t))− ψ̃(u0) +

∫ t

0

(
fλ(τ),

duλ
dτ

(τ)

)
H

dτ

+

∫ t

0

(
C

1/p′

2 |ȧ(τ)|+ |ḃ(τ)|
)
(φ̃λ(τ, uλ(τ)) + 1)dτ

≤ φ̃λ(0, u0) + ψ̃(uλ(t))− ψ̃(u0) +
1

2

∫ t

0

|fλ(τ)|2H dτ

+
1

2

∫ t

0

∣∣∣∣duλdτ (τ)

∣∣∣∣2
H

dτ +

∫ t

0

(
C

1/p′

2 |ȧ(τ)|+ |ḃ(τ)|
)
(φ̃λ(τ, uλ(τ)) + 1)dτ.

Then, by (A.4),

1

2

∫ t

0

∣∣∣∣duλdτ (τ)

∣∣∣∣2
H

dτ + φ̃λ(t, uλ(t))

≤ φ̃λ(0, u0)− ψ̃(u0) +
1

2

∫ t

0

∣∣fλ(τ)∣∣2Hdτ + ∫ t

0

(
C

1/p′

2 |ȧ(τ)|+ |ḃ(τ)|
)
dτ

+C3(φ̃λ(t, uλ(t)) + 1) +

∫ t

0

(
C

1/p′

2 |ȧ(τ)|+ |ḃ(τ)|
)
(φ̃λ(τ, u(τ))dτ.

At this point, using the fact d
dt |uλ(t)|H ≤

∣∣duλ

dt (t)
∣∣
H
, we have µ d

dt |uλ(t)|
2
H ≤

2µ2|uλ(t)|2H + 1
2

∣∣duλ

dt (t)
∣∣2
H

for all µ > 0. It implies

µ|uλ(t)|2H − µ|u0|2H − 2µ2

∫ t

0

|uλ(τ)|2Hdτ ≤ 1

2

∫ t

0

∣∣∣∣duλdτ (τ)

∣∣∣∣2
H

dτ.

Hence, by putting µ = 1− C3 and (A.4),

|uλ(t)|2H + φ̃λ(t, uλ(t))

≤ 1

µ

[
µ|u0|2H + φ̃λ(0, u0) + ψ̃(u0) + C4T + C3 +

1

2

∫ t

0

|fλ(τ)|2Hdτ
]
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+2µ

∫ t

0

|uλ(τ)|2Hdτ + C4

∫ t

0

φ̃λ(τ, u(τ)))dτ

≤ C5 + C6

∫ t

0

(|uλ(τ)|2H + φ̃λ(τ, u(τ)))dτ,

where

C4 = sup
0≤t≤T

(
C

1/p′

2 |ȧ(t)|+ |ḃ(t)|
)
,

C5 =
1

µ

[
µ|u0|2H + φ̃λ(0, u0) + ψ̃(u0) + C4T + C3 +

1

2

∫ t

0

|fλ(τ)|2Hdτ
]

and

C6 = max{2µ,C4}
since fλ is bounded in W 1,p′

(0, T ;X∗) ∩ L2(0, T ;H). By the Gronwall’s in-
equality,

|uλ(t)|2H + φ̃λ(t, uλ(t)) ≤ C5 exp(C6T ) := K1

for all t ∈ [0, T ]. Therefore, we have the conclusions. □

Lemma 3.4. There exists a constant K2 such that

sup
t∈[0,T ]

|∂φ̃λ(t, uλ(t))|p
′

X∗ ≤ K2,(6)

sup
t∈[0,T ]

|Jλ(t, uλ(t))|H ≤ K2,(7)

where Jλ(t, ·) = (I + λ∂H φ̃(t, ·))−1

Proof. By (A3), |∂φ̃λ(t, uλ(t))|p
′

X∗ ≤ C2(φ̃λ(t, uλ(t)) + 1) ≤ C2(K1 + 1) for all

t ∈ [0, T ] and for sufficiently small λ > 0. Hence, supt∈[0,T ] |∂φ̃λ(t, uλ(t))|p
′

X∗ ≤
K2. By Lemma 3.3,

|Jλ(t, uλ(t))|H ≤ |Jλ(t, uλ(t))− uλ(t)|H + |uλ(t)|H
≤ K1 + λ|∂φ̃λ(t, uλ(t))|H
≤ λK2 +K1 := K2.

Therefore, supt∈[0,T ] |Jλ(t, uλ(t))|H ≤ K2. □

Since the solutions {uλ}λ>0 are have the properties as mentioned the above
lemmas, we show the existence of a function u from {uλ}λ>0.

Lemma 3.5. There exists u ∈ Cw([0, T ];X) ∩W 1,2(0, T ;H) such that

uλn → u weakly in L2(0, T ;X) ∩W 1,2(0, T ;H),(8)

uλn(t) → u(t) weakly in H for all t ∈ [0, T ](9)

as n→ ∞, where {λn} > 0 is a sequence of real numbers such that λn → 0 as
n→ ∞. Moreover u(t) → u0 strongly in H as t→ 0+.
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Proof. Since H and V are reflexive (2), (4) and (5) imply (8), which also yields
u ∈ C([0, T ];H). Moreover, let q ∈ [1,∞) be fixed. Then by (2), we can extract
a subsequence {λqn} of {λn} depending on q such that uλq

n
−u0 → u−u0 weakly

in Lq(0, T ;H). Hence it is obvious that uλq
n
−u0 → u−u0 weakly in Lq(0, t;H)

for any t ∈ [0, T ]. Therefore since uλq
n
(0) = u0, it follows from (4) that

∥u− u0∥Lq(0,t;H) ≤ lim inf
λq
n→0

∥uλq
n
− u0||Lq(0,t;H)

≤ lim inf
λq
n→0

∫ t

0

(∫ τ

0

∣∣∣∣duλq
n

ds
(s)

∣∣∣∣2
H

)q/2

τ q/2dτ

1/q

≤ K
1/2
1

(
2

q + 2

)1/q

t(1/2+1/q).

Thus we have

|u(t)− u0|H ≤ sup
τ∈[0,t]

|u(τ)− u0|H

= lim
q→+∞

∥u− u0∥Lq(0,t;H) ≤ K
1/2
1 t1/2

for all t ∈ [0, T ], which implies u(t) → u0 strongly in H as t→ +0.
Now, let t ∈ [0, T ] be fixed. Since uλn(0) = u(0) = u0, we have from (5)

that

(uλn(t)− u(t), ϕ)H =

∫ t

0

(
duλn(τ)

dτ
− du(τ)

dτ
, ϕ

)
H

dτ → 0

for all ϕ ∈ H and t ∈ [0, T ]. It implies (9). Moreover, by (5) and (9), for any
t ∈ [0, T ], we can take a subsequence {λtn} of {λn} depending on t such that

uλt
n
(t) → u(t) weakly in X.

It then follows from (5) that |u(t)|X ≤ lim inf
λt
n→0

|uλt
n
|X ≤ K1, where K1 is in-

dependent of t. Therefore, we conclude that u(t) ∈ X for all t ∈ [0, T ] and
supt∈[0,T ] |u(t)|X ≤ K1 < +∞. Hence, for all t ∈ [0, T ] and {tn} with tn → t

as n → +∞, there exist a subsequence {tnk
} of {tn} and w ∈ X such that

u(tnk
) → w weakly in X as nk → +∞. On the other hand, u(tnk

) → u(t)
strongly in H as nk → +∞, since u ∈ Cw([0, T ];X). Then, by virtue of
X ⊂ H ≡ H∗ ⊂ X∗, we find w = u(t). Whence it follows u ∈ Cw([0, T ];X). □

Proof of Theorem 3.1 Since supt∈[0,T ] |∂φ̃λn(t, uλn(t))|
p′

X∗ ≤ K2 by (6), it is

obvious that there exists h ∈ Lp′
(0, T ;X∗) such that

∂φ̃λn(·, uλn(·)) → h weakly in Lp′
(0, T ;X∗).

Since ∂φ̃λn(t, uλn(t)) ∈ ∂φ̃(t, Jλn(t, uλn(t))) ⊂ ∂φ(t, uλn(t)), h(t) ∈ ∂φ(t, u(t))
for a.e. t ∈ (0, T ) by the demiclosedness of maximal monotone operator and
Proposition 1.1 of [8].
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Let gλn(t) = −fλn(t) +
duλn

dt (t) + hλn(t) ∈ ∂H ψ̃(uλn(t)). Then, since fλn

is bounded in W 1,p′
(0, T ;X∗),

∫ T

0

∣∣∣duλn

dt (t)
∣∣∣2
X∗

dt ≤ K for some constant K by

(4) and (6). Hence, there exists g ∈ L2(0, T ;X∗) such that

(10) gλn
→ g weakly in L2(0, T ;X∗),

where g(t) = −f(t)+ du
dt (t)+h(t). Moreover, from (CP)λn we get by integrating

the product of gλn(t) and uλn(t) over (0, T ) that∫ T

0

⟨gλn(t), uλn(t)⟩dt

=

∫ T

0

⟨−fλn(t) +
duλn

dt
(t) + ∂H φ̃λn(t, uλn(t)), uλn(t)⟩dt

=

∫ T

0

⟨−fλn(t), uλn(t)⟩dt+
∫ T

0

⟨∂H φ̃λn(t, uλn(t)), uλn(t)⟩dt

+
1

2
|uλn(T )|

2
H − 1

2
|u0|2H .

Since fλn → f strongly in W 1,p′
(0, T ;X∗), it follows

lim sup
λn→0

∫ T

0

⟨gλn(t), uλn(t)⟩dt

= lim
λn→0

∫ T

0

⟨−fλn(t), uλn(t)⟩dt+
1

2
lim sup
λn→0

|uλn(T )|2H − 1

2
|u0|2H

+ lim
λn→0

∫ T

0

⟨∂H φ̃λn(t, uλn(t)), uλn(t)⟩dt

=

∫ T

0

⟨−f(t) + du(t)

dt
+ h(t), u(t)⟩dt.

By Lemma 1.3 of [5] and Proposition 1.1 of [8], it follows from (8) and (10) that
g(t) = −f(t) + du(t)/dt + h(t) ∈ ∂ψ(u(t)) for a.e. t ∈ (0, T ). This completes
our proof. □
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