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IDEALS OF Zp» [X]/(X’ —1)
SunGg Sik Woo

ABSTRACT. In [6, 8], we showed that any ideal of Z4[X]/(X' — 1) is
generated by at most two polynomials of the ‘standard’ forms when [ is
even. The purpose of this paper is to find the ‘standard’ generators of
the cyclic codes over Zpa of length a multiple of p, namely the ideals of
Zpa [X]/(X!—1) with an integer  which is a multiple of p. We also find an
explicit description of their duals in terms of the generators when a = 2.

1. Introduction

In [4], a complete description of the ideals of Z,»[X]/(X'—1) (i.e., the cyclic
codes of length [ over Z,») is given when [ is prime to p. When p" = 4 and !
is of the form [ = 2*, it was shown that S’ = Z4[X]/(X?" — 1) is isomorphic to
S =174 [X]/(XQk - 2X2k_1) and the ideals of the latter ring are generated by
two elements of some special type [7]. More generally, the cyclic codes of even
length was described in [6].

The purpose of this paper is to find a description of the cyclic code of length
divisible by p over Zya, that is the ideals of Z,. [ X]/(X! —1) with I = p"m,a >
1,(m,p) = 1 and n > a. Also, we find a description of the dual of the cyclic
codes when a =2 and [ = p™.

For this we will show, in §5, that the ring Z,.[X]/(X! — 1) (I = p™m) is
isomorphic to S[Y]/(Y™ — u) where S = Z,.[X]/(X?" — ph(X)) for some
MX) € Zpa[X] and w € S is a unit. Using the fact that (p,m) = 1 we then
show that S[Y]/(Y™ —u) is isomorphic to a direct sum of the rings of the type
SIY]/(f) for some f € S[X] in which every ideal is a ‘descent’ of an ideal of S.

In §2, we start investigating the rings S of the form Z,.[X]/(X?" — ph(X))
where h(X)) € Z,.[X]. We show that every ideal of S is generated by some
special forms, like X* — ph(X) for some h(X) € Zy«[X] and pX"’s.

Next we show that the ring Z,.[X]/(XP" — 1) is isomorphic to the ring of
the form S = Z,.[X]/(XP" — ph(X)) for some h(X) € Z,«[X] by using some
combinatorial facts (§3).
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In §4, we show that the dual C* of a cyclic code C over Zyy2 of length p™
generated by the ideal I is generated by the annihilator ideal Ann(7) of I. And
the explicit generators for Ann(7l) is given in terms of generators of I.

A ring means a commutative ring with the identity element 1 throughout
this paper. The characteristic of a ring R is the smallest nonnegative integer
n such that nx = 0 for all x € R. The characteristic of a ring is assumed to be
a power of a prime p. We assume p to be an odd prime in §4.

After this paper was written the author come to know that S. T. Dougherty
and Y. H. Park [3] worked over the same subject using coding theoretic meth-
ods. However the author thinks that a purely algebraic approach is still worth
for publication.

2. Algebras generated by a nilpotent element over Zya
and the ideals

We consider a ring of the form S = Z,.[X]/(a(X)) where a(X) is a monic
polynomial of degree m such that X™ € («a(X)) for some n. If this happens,
we show that the polynomial a(X) assumes some special form.

Lemma 1. Let S = Zye [ X]/(a(T)) for some o(T) € Zpa|[X]. Then the canon-
ical image x of X in S satisfies 2™ = 0 if and only if a(X) = X™ + ph(X) for
some h(X) € Zpa[X].

Proof. It S = Z,«[X]/(a(T)) with a(X) = X™ + ph(X) for some h(X) €
Zpa|X], then the canonical image x of X in S satisfies 2™ = 0.

Conversely, suppose S satisfies the condition. If we reduce modulo the ideal
(p), then 2™ = 0 implies &(X) divides X™ where &(X) denotes the image of
a(X) under Z,.[X] — Z,[X]. Since Z,[X] = Fy[X] is a UFD, we see that
a(X) = X™ for some m, i.e., X™ — a(X) € pZ,a[X]. Therefore o(X) has the
required form. O

In this section, a ring S will mean a cyclic Zy.-algebra of the form § =
Zpa [ X]/((X)) where a(X) is a monic polynomial of degree m such that
X" € (a(X)) for some n unless otherwise states. Whenever we talk about
a polynomial f(X) in S we shall choose a representative with degree less than
m. In this section we fix the degree of a(X), say deg(a(X)) = m.

As in [8], our first observation is that the ring S we are interested in is a
local ring and every ideal of S is primary. The same proof of the correspond-
ing assertion works as well in our case also. We include the proof just for
completeness.

Proposition 1. The ring S = Zy[X]/(a(X)) is a local ring with the mazimal
ideal (p, X). Every ideal J of S is primary with the radical rad(J) = (p, X).

Proof. Let m be a maximal ideal. Any nilpotent element is contained in every
prime ideal [1]. Since p, X are nilpotent, we see that p and X belong to m.
Hence (p, X) is contained in m. Since (p, X) is a maximal ideal as well, m =
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(p, X) and it is unique. Let J be an ideal of S. Then p and X, being nilpotent,
belong to the radical rad(J) of J. Therefore rad(J) = (p, X). It is well known
that if the radical of J is a maximal ideal, then J is primary [1, Proposition
4.2]. O

We will use the following well known fact freely.

Lemma 2. Let R be a commutative ring with the identity. If u is a unit and
v € R is nilpotent, then u + v is a unit.

We will show that if an ideal J of S = Zy«[X]/(«(X)) is contained in the
principal ideal (p) generated by p, then J is generated by at most (a — 1)
elements. We define an ordering on the set P = {(4,5)|1 <i < a,0 < j < m}
of pairs of integers by furnishing lexicographic order.

Proposition 2. Let J be an ideal of S contained in (p). Choose a subset
Py ={01,71), (i2,52),- -, (ir, jr)} of P satisfying the properties

(i) i1 <ia < - <ip and j1 > Jo >+ > jpr,

(i) (i1,41) is the smallest pair such that p"* X7t € J and

(iii) pP* XJs € J but p= X771 ¢ J (s =1,2,...,7).
Then J = (pi* X7, p2 X792 ... p'r XI*). In particular, J is generated by at most
(a — 1) elements.

Proof. Suppose p*X7 € J. Then i, < i <iqy1. If i =i, (vesp. i = iq41), then
J > ja (resp. j > jai1). Hence p'X7 is a multiple of one of the elements in
{pille,phij, L ,pikak}.

Now suppose i, < i < ig+1. Then j > j,. For otherwise the pair (7, j) must
be in the list. Hence p’ X7 is a multiple of pie X7, (I

Remark. We can choose the pairs Py in the following way: Let A = {(4,;)}
be the pairs such that p’X7Ji € J and for each fixed i (1 < i < a), j; is
the smallest integer such that p?X7 € J. Let (i1, j1) be the smallest pair in
A. If ji,4+1 > jiy, then do not include the pair (i; + 1,j;,+1) in P; because
pi L XJin+1 is a multiple of p’t X71. Hence the pair (iz,j2) among the pairs in
A will be in Py if and only if iy is the first integer after i; such that jo < j;.
And so on.

Definition 1. Let us call the element of the form pX" a pxr form.

By using something similar to the Euclidean algorithm on Zp.[X] we will
show that if the ideal J is not contained in the ideal (p) generated by p in
S, then J is generated by elements of the pxr forms in Proposition 2 and
polynomials of the form X* + ph(X). The following proposition and theorem
are easy generalizations over Zy. of corresponding assertions in [8, 9] and their
proofs are carried out with mutatis mutandis.

Proposition 3. Let S be as before. Let J be a nonzero ideal of S which is
not contained in the ideal (p). Then there are nonzero elements of the form
X* 4+ ph(X) where h € S of degree < k.
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Proof. If f(X)=%,_,, ;X" is a nonzero polynomial in J with ag a unit, then
f is a unit since X € S is nilpotent, i.e., J is the unit ideal.

Hence we may assume there is f(X) = Z?;BlaiXi € J such that ag is a
multiple of p. If the coefficients of every f(X) = Z?:OlaiX ¢ € J are divisible
by p, then J C (p) which is a contradiction. Thus we may assume there is
f(X) = Z;':OlaiX ¢ € J such that ag is divisible by p and a; is a unit for some

7 > 0. Let a; be the unit coefficient of the lowest degree, i.e., a;_1,a;—9,... are
in pZye. Let | be the smallest integer such that X' = 0. Then X'=71f(X) is
a desired form after multiplying a unit if necessary. O

Definition 2. The polynomials of the form
9(X) = X* + pap X" 4 pap_1 X"+ + pag
with ap,an—1,...,a0 € Zp= will be called an zkp form.

We will prove something similar to the Euclidean algorithm on Zy.[X]. Let
us agree that the degree of the zero polynomial is —0co and X* = 0 if k = —oo0.

Theorem 1 (Euclidean algorithm modulo p®). Let J be an ideal of S
which is not contained in the ideal (p) generated by p € S. Suppose that
g(X) = X¥ + ph(X) is an zkp form of the least degree in J. Then for

J(X) =2 icmai X" in J, we can write uniquely
f(X) = 9(X)q(X) +r(X)
with ¢(X),r(X) € S, deg(r) < k and r(X) € pZ,.[X].

Proof. Since g is monic, we can write f = gg+r for some r € S with deg(r) <
deg(g) = k uniquely by Euclidean algorithm over a commutative ring. We need
to prove that the coefficients of 7(X) are in pZp..

Assume that this is not true. If the coefficient of the lowest degree term is a
unit, then r(X) is of the form X (unit) with i < k since X is nilpotent. Hence
X% € J with i < k. But this contradicts to the fact that g(X) = X* + ph(X)
is of lowest degree.

Hence we may assume that the coefficient of the lowest degree term is p say,
r(X)=a; X7 +a;_1 X714+ + pa; X! with j < k and aj #0. Let a,X* be
the lowest degree term with a unit a,, that is, as_1,a5-2,... € pZpe. If s =3,
then a;r(X) is an xkp form which is of lower degree than g(X) which is a
contradiction.

Then we see that X*~Jr(X) — a;g(X) € J is a polynomial of degree < k
in which the divisibility of the coefficients of Xstk=i—1 Xs+tk=i=2  hy p
remain the same as those of as_1,as_2,... since the coefficient of terms of
degree < k in a;g(X) is in pZpa.

Let ph(X) = Y, ph; X*. If the coefficients of X*~1, Xk =2 Xsth=itl iy
Xk =ir(X) — a;jg(X) happen to vanish namely, X*7r(X) — a;9(X) = (as +
pajhs) XTI (as_1+pajhs—1) X TF=I 714 .+ (p+pajh) X'. Then as+pa;hs
is a unit and as—; + pajhs—; € pZpe for i > 1. But this gives us an element
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in J whose degree is lower than g(X) after multiplying some unit if necessary.
This is a contradiction.

If this is not the case, then we can repeat the same process until all the
coefficients of the terms but the last (s — ) terms vanish without changing the
divisibility by p of the coefficients of the last (s — ) terms to get an element
of J with degree < deg(X*~Jr(X) — a;g(X)). Then, the resulting element is
obviously an xkp form which is smaller than g(X) belonging to .J. d

Let J be a nonzero ideal of S which is not contained in (p). Choose an xkp
form g(X) = X* 4 ph(X) € J with h(X) € S, deg(h) < k of the lowest degree.
We will show that J is generated by g(X) and p*X7’s in Proposition 2.

As before, we let S is of the form Z,. /(a(X)) where a(X) € Zp.[X] is of
the form X™ + ph(X).

Theorem 2. Let J be an ideal of S which is not contained in (p). Let
g(X) = X* + ph(X) be an wkp form of the lowest degree in J. Then there
are {p" X7t p2XJ2 .. p'vXIr} such that

J = (g(X)’pllle’plzXJQ’ M ’piTXj"')’

where ip < dg < -0 < Ay, J1 > Jo > 00 > jp oand —oc0 < o < 1 (s =
1,2,...,7),7r < a. In particular, any ideal of S can be generated by at most a
elements.

Proof. Let g(X) = X* + ph(X) € J be an xkp form of the lowest degree
in J. Then by Theorem 1, every f(X) € J can be written as f = qg + r
with r € pZp.[X]. Let J' be the set of all remainders of elements of J upon
division by g. Then it is easy to show that J’ is an ideal of S contained in (p).
By Proposition 2, J' = (pit X% pi2XJ2 . pirXJIr). Now it is obvious that
J = (g(X),pr X1, p2 XI2 .. pir XIr). O

If @ = 2, then an ideal of S is generated by at most two elements. Hence we
have the following simple result.

Corollary. Let S = Z,2/(a(X)) and J be an ideal of S. If g(X) € J be an zkp
form of the lowest degree and pX" is the pxr form of the lowest degree, then
J = (9(X),pX").

Even though the Eisenstein’s Irreducibility Criterion is usually stated over
a unique factorization domain the same proof works for the polynomials over

L.

Theorem 3 (Eisenstein’s Criterion over Zpa). Let f(X) =" ja; X" be
a polynomial in Zp.[X] (a > 2). Suppose

pQTam p‘az (220,7(7’1—1)) and p’fan
Then f is irreducible in Zye [ X].
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Proof. Suppose f is reducible; f = gh with ¢ = X'+ --- + 59 and h =
tmX™ + -+ + tg. Since plag = soto and p? t ap only one of sy or tg is divisible
by p, say p 1 so and pltg. Also since p 1 a,, = sit,m, we see that p t t,,. Let
t; (i < n) be the coefficient of the lowest degree term such that p { ¢;. Then
since

a; = Soti + Slti—l + .- B

and since p 1 sot; and p|(s1t;—1+- -+ ) we have p { a;, which is a contradiction. O

Corollary. Every zkp form whose nonzero constant term is not divisible by p?
in Zpa[X] (a > 2) is irreducible.

3. Cyclic codes of length p™ over Zpa

A cyclic code over Zya is an ideal of Zy[X]/(X?" —1). To deal with the
polynomial X?" —1 ¢ Zype, we will need some combinatorial facts.

For a rational number k, let us write v, (k) = n if k = p™a with « a quotient
of integers which are prime to p. The following combinatorial fact may be well
known.

Proposition 4. For an odd prime p, let X; = {p"~ %, 2p" "% ... (p — 1)p" "},
(1 <i<a) beasubset of Zyn.Then for n > 2,a < n and for a positive integer
r with 0 < r < p" we have

. 1 (mod p®) if r=0, p”
(pr) =< (=15 ' (mod p®) if r=jp" e X, 1<i<a
0 (mod p*) otherwise,

where j=1 is taken in Zye.

If p =2, we have
2n
r

Proof. We recall

1 (mod 2%) if r=0, 2"
20 (mod 2%) if r=2"""1<i<a
0 (mod 2%) otherwise.

r 1-2-r
If r =0 or r = p™, then our result is obvious. Now we rewrite

o (p") _er=1) =2 @ -C=1) p"

r 1 . 2 r—1 o

Note that for any k < p™ the power of p in k is the same as the power of p in
p" —k, ie., vp(k) = v,(p" — k). On the other hand, p" — k = —k (mod p*) for
1 <k < (r —1). First suppose p is odd. Then we have (7)) = (=1)7#7" 2"
(—1) 2= = (=1)7j~'p" (mod p*).

(p”) _ " =)@ —p)--- (" —r+1)
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Now suppose p = 2. Then for » = 0 or » = 2" our result is obvious. For
0 < r < 2" we see that (7 ) is nonzero only when r = 2/(1 < i < a) by looking
at (1) and the sign is positive. O

We record the special case, when a = 2 for later use.

Corollary. Let p be an odd prime. Let X = {p"~1,2p" 1 ... (p — 1)p"~'}.
Forn > 2 and a positive integer r with 0 < r < p™, we have

N 1 (mod p?) if r=0, p"
p o . o
(r) =4 (=175 'p (mod p?) if r=jp" ' € X
0 (mod p?) otherwise,

where j71 is taken in Z,:.
If p =2, we have
on 1 (mod4) i r=0, 2"
<T> =42 (mod4) if r=2""1
0 (mod 4) otherwise.
Theorem 4. Let p be prime and let XP" — 1€ Zpa[X](n >a >2). Let h(T)
and h(T) be the polynomials in Zy. [T defined by

> (—1)jj_1pi_1ij7H if p is odd

1<5<p
hT) = < 1<i<a _
> o2 ifp=2
1<i<a
and T?"~"""W(T) = h(T). Then we have the decomposition
) XM _1=(x -1 ((X — )P T ph(X — 1)) .

Furthermore, if a = 2, then the decomposition (x) above are product of irre-
ducible polynomials.

Proof. First suppose p is odd. Then by Proposition 4, we have
XP = (X 1)+ 1)

=X -7+ Y (T X DT 4L

1<j<p
1<i<a

Hence we have
XV —l= (X 1P 4 Y (- (X -

1<j<p
1<i<a

—1

Now the coefficients of the last term is divisible by p. Hence we can define a
polynomial A(T) by
(0" —1) - (X — 1"
(X — 1Pt

p-h(X —1).
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Hence we have decomposition (x).

If p = 2 we can be proved similarly and we omit its proof.

When a = 2, irreducibility of the second factor in (x) follows from the
corollary of the Eisenstein Criterion. O

Corollary. With the same notations of Theorem 4, we have an isomorphism
1 Zya[X]/(XP" = 1) = Zya[T]/(T"" + ph(T))

of rings which maps f(X) to f(T+1). The inverse of  maps f(T) to f(X—1).

Proof. Simply make a substitution T'= X — 1. O

Remark. (1) We note that the ring S = Z,«[T]/(T?" + ph(T)) is a finite local
ring with the maximal ideal m = (p, T') and is generated by the canonical image
t of T in S which is nilpotent, namely t*" = 0.

(2) For a > 2, the polynomials %" 2" """ 4 ph(T) € Zya[T) are not irre-
ducible. For example, if we take p = 2,a = 3, then
27172

217.72 2n—2

32 o p g = (12 (12 21 — 9)

is a factorization into irreducible polynomials in Zg[T], say by Eisenstein’s
Criterion. It appears that there is no simple way to factor the polynomial

TP =P" """ 4 ph(T) € Zpa [T into irreducible polynomials, in general.

Example. Let p” = 35 = 729. Consider X7? —1 € Zg[X]. By Theorem 4, we

see
6

X¥ 1= (X -1 +3(X —1)*% +3(x - 1)¥
— (X -1 ((X 2P 43X —1)2+ 3) .
Hence the irreducible divisors of X7 — 1 € Zo[X] are
(X —1)>% +3(X —1)2+3 and (X — 1).

For later use we record the special case when a = 2. Now suppose p is an
odd prime. Then for n > 2, we have

p—1
X1 = (X =) 4 p | Do (-1 - )

=1

1

in Z,2[X] by Corollary to Proposition 4. Hence we obtain the following result.

Proposition 5. Let p be a prime and let XP" —1 € Z,2[X] (n > 2). Let
h(T) € Z,2[T] be the polynomial defined by

p_l , B
h(T) = Zl(—l)Jj_lT”’ " ifpis odd
=
T ifp=2,
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1

where j~is taken in Zy2. Then we have

X —1=(X-1)P +ph(X —1)
— (X —1)"" ((X — )PP 4 pR(X — 1)) ,

1

where h(T) is defined by TP"  h(T) = W(T). The latter factorization is into
monic irreducible polynomials. Also we have an isomorphism

Zy2 [X]/(XP" = 1) = Ze[T)/(T"" + ph(T))
sending f(X) to f(T +1).

By finding the irreducible factors of X?" — 1, we can characterize free cyclic
codes over Zy. of length p™ [7, Theorem 2, Theorem 3.

Theorem 5 ([7]). Let T = Zye. Let C be a cyclic code of length m over T.
Then C is T-free if and only if there is a polynomial g such that g|(X™ — 1)
that generate C. In this case, we have ranky(C) = m — deg(g).

Corollary. Let C be a cyclic code of length p™ over T' = Zpa. Then C is T-free
if C' is generated by a polynomial g of a product of the following form

(xr ~1)
Ifa = 2, then these are only free cyclic codes. In this case, we have ranky(C) =
p" — deg(g).

and (X —1)" (r=0,1,...,p").

Proof. Immediately follows from Theorem 4 and Theorem 5 O

4. Annihilating polynomials of the cyclic codes
over Zp2 and the duality

From the previous sections we know that the cyclic codes length p™ over Z,
is generated by at most two elements. The purpose of this section is to identify
the dual of the cyclic codes length p™ over Z,2. We assume p is an odd prime
since the case p = 2 was worked out in [8].

In this section, we let S = Z,2[T]/(a(T')) with

p—1
oT) =T+ (=1)5'pT",
j=1

where 7! is taken in Zy2 and [ = pn L

Also we let
p—1

WT) = (=151 = u(T)T'
j=1
with u(T) = —14+271T! —- ..+ (p—1)"'TP~D! which is a unit in S. Therefore
T = —pu(T)T" in S.
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Recall the annihilator Ann(/) of an ideal I of a commutative ring R is given
by
Ann(I) = {r € Rlrz =0 for all x € T}.
To find the annihilator of an ideal I of S, we will find xkp form and pxr form
which annihilates the generators of I in the ‘most economical’ way. It will turn
out that they generates the ideal Ann(I) as well as the dual of the cyclic codes
generated by the ideal I.

Proposition 6. Let S = Z,2[T]/(«(T)). Then the annihilator of the ideal
(pT™) is given by (TP p).

Proof. By Corollary to Theorem 2, we need to find an xkp and pxr forms of the
lowest degree which annihilate p7™. Now we have TP!~"(pT") = pT?' = 0 and
p(pT™) = 0. It is clear that T?'~" is an xkp form of the lowest degree which
annihilates g(T) and p is a pxr form of the lowest degree which annihilates
pT". ([

We will use the following notation for the rest of this section:
g(T) =T +papT" + -+ parT +pag (h < k < pl, a; € Z,2)
TP'=%g(T) = pbp, T™ + - + pby, T™* (bn, € Z3y2)
where Z7, denotes the units in Zy2 and h; > hiy1. For a polynomial f(T') we

denote deg (f(T)) to be the degree of the nonzero term in f(7T') of the lowest
degree. Hence h; = deg, (TP ~*g¢(T)).

Theorem 6. Let S = Z,2(T|/(a(T)) and let g(T) € S. Then the annihilator
Ann(g(T)) of the ideal generated by g(T') is given by the following:
(i) if he > k, then Ann(g(T)) = (gi-(T)) where

GE(T) = TP =F — pby Tk — o — pby, Tk,

i) of hy < k, then Ann(g = (g ,pTP=*) where g is given by

i) if hy < k, then A T L(T), pTP'=*) wh L(T) is given b
g (T) = TP — phy, TH—Pe — .. — phy

Proof. We need to find an xkp form T + ph'(T) of the lowest degree such
that T%g(T) = ph/(T)g(T). Hence we need to find the smallest a such that
Tg(T) € pZy2[T] and deg; (T°g(T)) > k.

(i) If hy > k, then obviously a = pl — k is the smallest such that T%¢(T)
belongs to pZ,2[T]. And since hy > k, we see that

TPk g(T) = pbp, T + -+ - + pby, T"
= (pbp, T" 7% + -+ + pby,, T %) g(T).

Therefore we see that gi-(T) is an xkp form of the lowest degree that annihilates
9(T).

A pxr form of the lowest degree that annihilates g(7') is pTP'~* but it already
belongs to the ideal (gi-(T)). Therefore Ann(g(T)) = (g1 (T)).
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(ii) Now suppose h; < k. Then we have
TWRH =R o(T) = pby, T 4 4 pby, T
= (pba, T" ™" + - + pbp, )9 (T).

Hence g3 (T)g(T) = 0 and g5 (T) is an xkp form of the lowest degree that
annihilates g(T).

On the other hand, we have pT?'~*g(T) = 0 and pT?'~* is a pxr form of
the lowest degree that annihilates g(T"). Therefore we see Ann(g(7")) is given
by (g2 (T), pT"'~"). O

Remark. Consider the ideal T = (¢(T"),pT"). Then we may assume that k > r
and hy > r. In fact, if k¥ < r, then we can write pT" = pT"*g(T) and
hence I = (g(T)). Also, we may assume h; > r. For otherwise we have
TPk g(T) = pThe (by Th = 4.+ b;) € (g(T)) where (byT" =l ... +-b,) is
a unit and hy < r. Hence pT" € (9(T)).

Theorem 7. Let S = Z,2[T]/(a(T)), g(T) € S as before. Let I = (g(T),pT")
with k > r and hy > r. Then the annihilator Ann(I) of the ideal is given by
the following:

(i) if he > k, then Ann(I) = (T*="gi-(T), pTP'=*) where gi-(T) is given in
Theorem 6.

(ii) if hy < k, then Ann(I) = (T " gy (T), pTP'=*) where g3 (T) is given in
Theorem 6.

Proof. (i) Suppose h; > k. We saw in the proof of Theorem 6 that gi-(T') is
an xkp form of the lowest degree that annihilates g(T"). However the lowest
degree xkp form that annihilates pT™ as well will be T%~"gi-(T).

A pxr form of the lowest degree that annihilates ¢g(7") as well as pT" is
pTP'=F. Therefore Ann(I) = (T*~ "¢ (T), pTP'=F).

(i) Now suppose h; < k. We saw in the proof of Theorem 6 that g3 (T') is
an xkp form of the lowest degree that annihilates g(T"). However the lowest
degree xkp form that annihilates pT™ as well will be T"¢~" g3 (T).

A pxr form of the lowest degree that annihilates ¢g(T') as well as pT" is
pTP'=F. Therefore Ann(I) = (T " g5 (T), pTP'=*). O

We will count the number of elements in the cyclic codes. Let
g(T) = T* + papT" + pan 1 T" ™ + -+ + pag (h < k)

with ap,ap_1,...,a9 € Zy. For each basis element {1,T,...,TP'"1} (in this
order) of S express Tg(T) as a linear combination of the basis {7P'~! ... T,1}
(in this order) of S. Then its matrix expression is of the form

A B
“=(c 1)
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where A is a (pl — k) x (pl — k) matrix of the form

0
A= 0 . * %
1 * * %

with 1’s on the opposite diagonal and *’s below the opposite diagonals which
consist of the elements of pZ,>. The matrix B is of size (pl — k) x k over pZ,:
and C is a k x (pl — k) matrix over pZ,:.

And D is a k X k matrix of the form

* * -+ pby, O 0
pbht 0o ...... 0
* 0 ..o 0
D= |pb,, O 0 01,
0 0 0 0
0 0 0

where *’s are in pZ,> and by, is a unit. Hence the upper left corner of D is a
square matrix whose opposite diagonals are multiples of p.

The moral is that adding a constant multiple of a row to another one does
not change the submodule generated by the rows.

We consider two cases. The first case is when D = 0. This is equivalent to
deg; (TP'=*g(T)) > k. The second case we consider is when D # 0. This is
equivalent to that deg; (TP'~*¢(T)) < k.

Theorem 8. Let S = Z,2[T]/(a(T)) and let g(T) € S. Then the ideal I
generated by g(T') is isomorphic, as Zy2-modules, to the following:

(i) if hy > k, then I is Zy2-free of rank (pl — k),

(ii) if hy < k, then I is isomorphic to the sum of (pl — k) copies of Z,2 and
(k — hy) copies of Zy,.

Proof. (i) Suppose h; > k. Then we have D = 0. And in this case, the number
of 1’s is pl — k. And, using these 1’s, we can get rid of multiples of p’s in C.
Hence the ideal generated by g(7') is free over Zy2 of rank pl — k.

(ii) Now suppose h; < k. As before, we can make all entries below the 1’s on
the opposite diagonal of A. Also we can get rid of multiples p’s in C without
changing D since the entries in B and C' are the multiples of p. We can get
rid of all entries above the pby,, on the opposite diagonal of a square matrix on
the upper left corner of D. It is clear that the ideal generated by the rows is
isomorphic to the sum of (pl — k) copies of Z,> which correspond to the 1’s in
A and s — k copies of Z, which correspond to pby,’s in D. (I

Proposition 7. Let S = Z,2[T]/(a(T)). Then the ideal (pT") generated by
pI'™ is isomorphic to (pl — r) copies of Zy.

Proof. Tt is easy to show and we omit its proof. (]
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Theorem 9. Let S = Z,2[T|/(a(T)) and let g(T') € S. Let I = (g(T'),pT") be
the ideal generated by g(T) and pT"with k > r and hy > r. Then the ideal I is
isomorphic, as Zy2-modules, to (pl — k) copies of Zy> and k — 1 copies of Z,,.

Proof. The generator matrix for (g(7T'),pT") is

A B
G=|c DJ|,
P By

where F' = (F}, F3) is a matrix of the same form as D of size (pl —r) x pl.
If hy > k, then D = 0. And using 1’s in A we get rid of all entries below the
I’s in A. The number of p’s in F3 is k — r which gives the & — r copies of Z,,.
Now if hy < k, then the number of pby,’s in the opposite diagonal of D is
(k — ht) and the number of p’s in the opposite diagonal of Fy is (k — 7). Since
we assumed h; > r we see k —r > k — h;. Now it is easy to see that the p’s in
F5 contribute to the factor of k — r copies of Z,,. ([

We want to identify the dual of the cyclic code corresponding to the ideal I
is the cyclic code of the ideal corresponding to the ideal Ann(I). Let C (resp.
C") be the cyclic code corresponding to the ideal I (resp. Ann(7)). To show
C" = C* we need to show C'1C* and C’ has the right number of elements as
given by the lemma below.

Lemma 3. Let C be a Zy2-submodule of L. Define
Ct={beZbla-b=0 for alla € C},
where a = (a1,...,a,),0 = (b1,...,b,) and a -b = a1by + -+ + apb,. Then

the number of elements of C is of the form #C = (p*)*1p*2 and then #C*+ =
(pQ)TL—kl—k‘kaz.

Proof. By the classification of finite abelian groups we may assume C' is iso-
morphic to (Zy2)** x (Z,)*?. Now it is easy to show that C* is isomorphic to
the abelian group (Z,2)" %1% x (Z, ). O

Proposition 8. Let S = Z,2[T]/(a(T')). Let C be the cyclic code generated by
pT". Then the dual C* is given by the ideal (TP'=", p).

Proof. We see that the number of elements of C' is pP!~" by Proposition 7. It
is obvious that TP'~" and p annihilates pT". By Theorem 9, the number of
elements in the ideal (TP'~",p) is (p?)"p?'~". Now that is the right number of
elements for the dual. O

Theorem 10. Let S = Z,2[T|/(a(T)). Let g(T) € S be as before. Let C' be
the cyclic code generated by g(T) then the dual C+ is generated by;

(i) if hy > k, then O+ is generated by gi- (T) where gi- is given in Theorem
0.

(ii) if hy < k, then C* is generated by g5 (T) and pTP'=* where g5 is given
in Theorem 6.
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Proof. (i) Suppose h; > k. Since we know that gi-g = 0 we need to check that
(gi (T)) has the right number of elements. By Theorem 9, we have #(gi- (1)) =
(p?)*. On the other hand, #(g(T)) = (p?)?'=* as required.

(ii) Now suppose k > h;. We need to count the number of elements of
(95 (T), pTP'=F). First we have #(g(T)) = (p?)?'~*p*~h¢. On the other hand,
#(g3 (T),pTPI=F) = (p?)pl=pi=he) pI=ho)=@I=k) — (p2)hep by Theorem 9. As
required. (I

Theorem 11. Let S = Z,2[T]/(a(T)). Let g(T) € S be as before. Let C' be
the cyclic code generated by the ideal I = (g(T),pT") with k > r and hy > r as
before. Then the dual C+ is generated by

(i) Tk="gi-(T) and pTP'=% if hy > k where gi- is given in Theorem 6.

(ii) T"="gs-(T) and pTP'=F if hy < k where g3 is given in Theorem 6.

Proof. (i) Suppose h; > k. Since we know that gi-g(T) = 0 = pTP ~Fg(T)
we need to check that (gi-(T),pTP'~*) has the right number of elements. By
Theorem 9, we obtain # (7%~ "gi-(T), pT?"~*) = (p*)"p*~". On the other hand,
£(g(T), pT7) = (PP *p*~" as required.

(ii) Now suppose k > h;. Again we need to count the number of elements
of (The="gs-(T), pTP'=F). First we have #(g(T),pT") = (p?)P'~*p*~". On the
other hand, (" ~7g3 (7), pTP=F) = (= 01=plot=n) =40 = (2yrphs
by Theorem 9. As desired. O

5. Cyclic codes of length A = p™m over Zp. with (p,m) =1

Let p be a prime and write A = p"m with (p,m) = 1. When p® = 4 we
showed, in [6], how one can find the ideals of Z4[X]/(X* —1) from the ideals of
S' = 74[X]/(X?" — 1) and the ideals of S'[Y]/(Y™ —t). And we showed that
the latter ring decomposes as a direct sum of the rings of the form S'[X]/(f)
in which every ideal comes from the ideals of S’. Since the same method as in
[6] applies to our case, we will merely indicate how this can be done.

We first show that the ring Z,«[X]/(X* — 1) is isomorphic to the ring
S[Y]/(Y™ — 2 — 1) where S = Z,a[T]/(T?" — ph(T)).

Theorem 12. We have an isomorphism
Zpe[X]/(X* = 1) = S[Y]/ (Y™ —t = 1),
where S = Zya [T)/(T?" — ph(T)) and t denotes the canonical image of T in S.

Proof. Let S' = Zpa [T]/(Tpn —1). By letting T = X™, we can identify
Zopa[X]/(X™)P" — 1) = Z[T)/(T" —1)[VT ] = S[VT ]. And we have
an isomorphism

a:SVT]S Y]/ ™ -9,

where ¢ is the canonical image of T in S’. Composing « with the isomorphism

W2 s [X]/(XP" = 1) = Ly [T]/(T" +ph(T))
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of Corollary to Theorem 4, we have the desired isomorphism. O

As we remarked in §3, S is a finite local ring with the maximal ideal m =
(p,T) with characteristic a power of p. Recall some definitions on finite local
rings [4]. Let x4 : S — S/m be the natural map and let & = S/m be the
residue field. A polynomial f(Y) € S[Y] is called regular if the coefficients of
f generates the unit ideal of S. And f is called basic irreducible if u(f) € k[Y]
is irreducible. Two polynomials f(Y),g(Y) € S[Y] are said to be coprime if
there are f1(Y),¢1(Y) such that f1f + g1g = 1.

Proposition 9 ([6, Proposition 1]). Let S be a finite ring of characteristic
p and uw € S be a unit. If m is prime to p, then the polynomial f(X) =
X™—w in S[X] can be written as a product of reqular basic irreducible coprime
polynomials.

Since (p,m) =1 and t +1 € S is a unit, we see that Y —t — 1 € S[Y]
can be factored into regular basic irreducible pairwise coprime polynomials
f1, f2y ..., fr. By the Chinese Remainder Theorem we see that

SY/(Y™ — 2 —1) = &, SY]/(f)-
Now we can generalize Lemma 2.1 of [4] in the following form.

Lemma 4 ([6, Lemma 4]). Let S be a finite local ring. Let f be a basic
irreducible in S[T] and let w : S — S[T]/(f) be the natural map. If I is an
ideal of S[T]/(f), then there is an ideal J of S such that I = 7(J).

Since f;’s are regular basic irreducible polynomials we see that the ideals of
S[Y]/(fi) come from the ideals of S. By Theorem 2, we know how to find the
ideals of S. Therefore we can find the ideals of Z,.[X]/(X* — 1).

Factorization of the polynomial f(Y) = Y™ — ¢ — 1 into basic irreducible
polynomials in S[Y] is, in general, not so easy. However, if we reduce f(Y)
modulo the maximal ideal m, then we obtain f(Y) =Y™ — 1 € F,[Y] and we
can factor f(Y) rather easily by using the theory of finite fields.

Now, we recall some basic facts about roots of unity and cyclotomic polyno-
mials over a finite fields from [5]. Let F be a field of characteristic p > 0 and
m a positive integer. Let F(™) be the splitting field of X™ — 1 over F and fi,,
be the set of roots of unity. If (m,p) = 1, then p,, is a cyclic group of order m
[5, p. 59]. Let ¢ be a primitive m-th root of unity, i.e., a generator of p,. We
define the m-th cyclotomic polynomial to be

Qu(X)= ] x-¢).
(s,m)=1

Then it is well known that @Q,,(X) € F,[X] is a polynomial of degree ¢(m)
where [, is the field of p elements, i.e., the prime field of F'.

Theorem 13 ([5, pp. 60-61]). Let F' =T, be the field of p elements and m be
a positive integer not divisible by p. Then
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(1) X7 =1 =Tl}, QrX).

(ii) Let d be the least positive integer such that p® =1 mod m. Then Q. (X)
factors into ¢(m)/d irreducible polynomials in F[X] of degree d and [F™) :
Fl=d.

Now, we can use the Hensel’s Lemma to lift the factorization of the polyno-
mial Y™ —1 € F,[Y] to the factorization of Y™ — ¢t € S’[Y]. In [2, II1.4.3], the
Hensel’s Lemma is stated in very general form. We adapt it for our purpose.

Hensel’s Lemma [2]. Let S be an Artin local ring with the mazimal ideal m.
Let k = S/m be the residue field and p : S — k be the natural map. Let P(X) €
S[X] be a polynomial. Let g € k[X] be a monic polynomial and h(X) € k[X] be
a polynomial such that g, h are coprime. Suppose that u(P) = g-h. Then there
exist unique coprime polynomials G, H € S[X] such that u(G) = g, u(H) = h
and P(X) =G(X)H(X) in S[X].

Using the isomorphism of Theorem 12, we apply these results with the Artin
local ring S’ = Z,a[T]/(T" —1) to find the ideals of Z,.[X]/(X* — 1).

Theorem 14. Let A = p"m withn > 1 and (m,p) = 1. For each divisor k of m

let dj, be the smallest positive integer such that p% =1 (mod k). Then Y™ —t—1
is a product of r := Zk\m%f) irreducible polynomials {f1, fo,..., fr} in S[Y]

where S = Zpa [T]/(TP" — ph(T)) (n > a). Further, we have an isomorphism
Ly [X]/(X* = 1) = @1 S[Y]/(f)
and the ideals of S[Y]/(fi) comes from the ideals of S which are generated by

at most a elements.

Proof. By Theorem 13 and the Hensel’s Lemma we have the required factor-
ization of Y™ — ¢t — 1. By Lemma 4, the ideals of S[Y]/(f;) comes form the
ideals of S and by Theorem 2, they are generated by at most a elements. [

Remark. By using the same method in [4, Corollary 3.6] it can be shown that
the ideals of Z,«[X]/(X* — 1) are generated by at most a elements.

Example. Let A\ = 5%6 = 750. We saw Zs2[X]/(X* — 1) is isomorphic to
3

S'[Y]/(YS — t) where S’ = Zs2[T)/(T" —1). Reduce Y — % € §'[Y] modulo
the maximal ideal m’ = (5,7 —1) of S’, we obtain Y% —1 € F5[Y]. By Theorem
13, we can factor it as Y® — 1 = Q1Q2Q3Qs. By using [4, Theorem 3.27] we
have Q1 =Y —1,Q: =Y +1,Q3=Y2+Y +1,Q¢ = Y2 —Y +1. By Theorem
13, we conclude that @1, @2, Q3 and Qg are irreducible. Hence we obtain an
irreducible factorization

Yo 1=Y DY +1)Y*+Y+1D)(Y2-Y +1)
in F5[X]. By Hensel’s Lemma we can lift the factorization in S'[Y]. In fact,

V6 t= (Y —EHY + Y2+ Y + T2 -y +7)
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is the factorization into basic irreducible polynomials in S’[Y]. By writing
Q=Y -1 Q=Y+ Q0 =V2 4 Y+ and Qs = V2 'Y + 7
we see, by Theorem 14, that Zs2[X]/(X 70 — 1) is isomorphic to the direct sum
S'/Q, 85 /Qy® S /Q3® S’ /Qg and the ideals of each factor are the descents
of the ideals of S’ by Lemma 4. And we saw that the ring S’ is isomorphic to
the rings we investigated in §2 where we showed how to find the ideals of such
rings.
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