ON VAGUE FILTERS IN BE-ALGEBRAS

Sun Shin Ahn and Jung Mi Ko

Abstract

In this paper, we introduce the notion of a vague filter in $B E$ algebras, and investigate some properties of them. Also we give conditions for a vague set to be a vague filter, and we characterize vague filters in $B E$-algebras.

1. Introduction

Y. Imai and K. Iséki introduced two classes of abstract algebras: $B C K$ algebras and $B C I$-algebras $([6,7])$. It is known that the class of $B C K$-algebras is a proper subclass of the class of $B C I$-algebras. In $[4,5], \mathrm{Q} . \mathrm{P} . \mathrm{Hu}$ and X . Li introduced a wide class of abstract algebras: $B C H$-algebras. They have shown that the class of $B C I$-algebras is a proper subclass of the class of BCH algebras. J. Neggers and H. S. Kim ([16]) introduced the notion of d-algebras which is another generalization of $B C K$-algebras, and also they introduced the notion of B-algebras ([17, 18]), i.e., (I) $x * x=0$; (II) $x * 0=x$; (III) $(x * y) * z=x *(z *(0 * y))$, for any $x, y, z \in X$, which is equivalent in some sense to the groups. Moreover, Y. B. Jun, E. H. Roh and H. S. Kim ([9]) introduced a new notion, called an $B H$-algebra, which is a generalization of $B C H / B C I / B C K$-algebras, i.e., (I); (II) and (IV) $x * y=0$ and $y * x=0$ imply $x=y$ for any $x, y \in X$. A. Walendziak obtained the another equivalent axioms for B-algebra ([20]). H. S. Kim, Y. H. Kim and J. Neggers ([12]) introduced the notion a (pre-) Coxeter algebra and showed that a Coxeter algebra is equivalent to an abelian group all of whose elements have order 2, i.e., a Boolean group. C. B. Kim and H. S. Kim ([10]) introduced the notion of a $B M$-algebra which is a specialization of B-algebras. They proved that the class of $B M$-algebras is a proper subclass of B-algebras and also showed that a $B M$-algebra is equivalent to a 0 -commutative B-algebra. In [11], H. S. Kim and Y. H. Kim introduced the notion of a $B E$-algebra as a generalization of a $B C K$-algebra. Using the notion of upper sets they gave an equivalent condition of the filter in $B E$-algebras.

Received April 4, 2010.
2010 Mathematics Subject Classification. 06F35.
Key words and phrases. BE-algebra, vague set, (vague) filter.

In this paper, we introduce the notion of a vague filter in $B E$-algebras, and investigate some properties of them. Also we give conditions for a vague set to be a vague filter, and we characterize vague filters in $B E$-algebras.

2. Preliminaries

We recall some definitions and results discussed in [11].
Definition 2.1. An algebra $(X ; *, 1)$ of type $(2,0)$ is called a $B E$-algebra if
(BE1) $x * x=1$ for all $x \in X$;
(BE2) $x * 1=1$ for all $x \in X$;
(BE3) $1 * x=x$ for all $x \in X$;
(BE4) $x *(y * z)=y *(x * z)$ for all $x, y, z \in X$ (exchange).
We introduce a relation " \leq " on X by $x \leq y$ if and only if $x * y=1$. A nonempty subset S of X is said to be a subalgebra of a $B E$-algebra X if it is closed under the operation "*". Noticing that $x * x=1$ for all $x \in X$, it is clear that $1 \in S$.

Proposition 2.2. If $(X ; *, 1)$ is a $B E$-algebra, then $x *(y * x)=1$ for any $x, y \in X$.

Example 2.3. Let $X:=\{1, a, b, c, d, 0\}$ be a set with the following table:

$*$	1	a	b	c	d	0
1	1	a	b	c	d	0
a	1	1	a	c	c	d
b	1	1	1	c	c	c
c	1	a	b	1	a	b
d	1	1	a	1	1	a
0	1	1	1	1	1	1

Then $(X ; *, 1)$ is a $B E$-algebra.
Definition 2.4. Let $(X ; *, 1)$ be a $B E$-algebra and let F be a non-empty subset of X. Then F is said to be a filter of X if
(F1) $1 \in F$;
(F2) $x * y \in F$ and $x \in F$ imply $y \in F$.
In Example 2.3, $F_{1}:=\{1, a, b\}$ is a filter of X, but $F_{2}:=\{1, a\}$ is not a filter of X, since $a * b \in F_{2}$ and $a \in F_{2}$, but $b \notin F_{2}$.

Proposition 2.5. Let $(X ; *, 1)$ be a $B E$-algebra and let F be a filter of X. If $x \leq y$ and $x \in F$ for any $y \in X$, then $y \in F$.

3. Basic results on vague sets

Definition 3.1 ([3]). A vague set A in the universe of discourse U is characterized by two membership functions given by:
(1) A truth membership function

$$
t_{A}: U \rightarrow[0,1],
$$

and
(2) A false membership function

$$
f_{A}: U \rightarrow[0,1],
$$

where $t_{A}(u)$ is a lower bound of the grade of membership of u derived from the "evidence for u ", and $f_{A}(u)$ is a lower bound on the negation of u derived from the "evidence against u ", and

$$
t_{A}(u)+f_{A}(u) \leq 1
$$

Thus the grade of membership of u in the vague set A is bounded by a subinterval $\left[t_{A}(u), 1-f_{A}(u)\right]$ of $[0,1]$. This indicates that if the actual grade of membership is $\mu(u)$, then

$$
t_{A}(u) \leq \mu(u) \leq 1-f_{A}(u) .
$$

The vague set A is written as

$$
A=\left\{\left\langle u,\left[t_{A}(u), f_{A}(u)\right]\right\rangle \mid u \in U\right\},
$$

where the interval $\left[t_{A}(u), 1-f_{A}(u)\right]$ is called the vague value of u in A and is denoted by $V_{A}(u)$.

Definition $3.2([3])$. A vague set A of a set U is called
(1) the zero vague set of U if $t_{A}(u)=0$ and $f_{A}(u)=1$ for all $u \in U$,
(2) the unit vague set of U if $t_{A}(u)=1$ and $f_{A}(u)=0$ for all $u \in U$.
(3) the α-vague set of U if $t_{A}(u)=\alpha$ and $f_{A}(u)=1-\alpha$ where $\alpha \in(0,1)$.

For $\alpha, \beta \in[0,1]$ we now define (α, β)-cut and α-cut of a vague set.
Definition 3.3 ([3]). Let A be a vague set of a universe X with the truemembership function t_{A} and the false-membership function f_{A}. The (α, β)-cut of the vague set A is a crisp subset $A_{(\alpha, \beta)}$ of the set X given by

$$
A_{(\alpha, \beta)}=\left\{x \in X \mid V_{A}(x) \geq[\alpha, \beta]\right\} .
$$

Clearly $A_{(0,0)}=X$. The (α, β)-cuts are also called vague-cuts of the vague set A.

Definition 3.4 ([3]). The α-cut of the vague set A is a crisp subset A_{α} of the set X given by $A_{\alpha}=A_{(\alpha, \alpha)}$.

Note that $A_{0}=X$, and if $\alpha \leq \beta$, then $A_{\beta} \subseteq A_{\alpha}$ and $A_{(\alpha, \beta)}=A_{\alpha}$. Equivalently, we can define the α-cut as

$$
A_{\alpha}=\left\{x \in X \mid t_{A}(x) \geq \alpha\right\} .
$$

For our discussion, we shall use the following notations, which are given in [3], on interval arithmetic.

Notation. Let $I[0,1]$ denote the family of all closed subintervals of $[0,1]$. If $I_{1}=\left[a_{1}, b_{1}\right]$ and $I_{2}=\left[a_{2}, b_{2}\right]$ are two elements of $I[0,1]$, we call $I_{1} \geq I_{2}$ if $a_{1} \geq a_{2}$ and $b_{1} \geq b_{2}$. Similarly, we understand the relations $I_{1} \leq I_{2}$ and $I_{1}=I_{2}$. Clearly the relation $I_{1} \geq I_{2}$ does not necessarily imply that $I_{1} \supseteq I_{2}$ and conversely. We define the term "imax" to mean the maximum of two intervals as

$$
\operatorname{imax}\left(I_{1}, I_{2}\right)=\left[\max \left(a_{1}, a_{2}\right), \max \left(b_{1}, b_{2}\right)\right]
$$

Similarly, we define "imin". The concept of "imax" and "imin" could be extended to define "isup" and "iinf" of infinite number of elements of $I[0,1]$. It is obvious that $L=\{I[0,1]$, isup, iinf, $\leq\}$ is a lattice with universal bounds $[0,0]$ and $[1,1]$.

4. Vague filters

In what follows let X be a $B E$-algebra unless otherwise specified.
Definition 4.1. A vague set A of X is called a vague filter of X if the following conditions are true:
(c1) $(\forall x \in X)\left(V_{A}(1) \geq V_{A}(x)\right)$,
(c2) $(\forall x, y \in X)\left(V_{A}(y) \geq \operatorname{imin}\left\{V_{A}(x * y), V_{A}(x)\right\}\right)$,
that is,

$$
\begin{equation*}
t_{A}(1) \geq t_{A}(x), 1-f_{A}(1) \geq 1-f_{A}(x) \tag{4.1}
\end{equation*}
$$

and

$$
\begin{align*}
& t_{A}(y) \geq \min \left\{t_{A}(x * y), t_{A}(x)\right\} \\
& \quad 1-f_{A}(y) \geq \min \left\{1-f_{A}(x * y), 1-f_{A}(x)\right\} \tag{4.2}
\end{align*}
$$

for all $x, y \in X$.
Let us illustrate this definition using the following examples.
Example 4.2. Let $X:=\{0, a, b, c\}$ be a $B E$-algebra with the following Cayley table:

$*$	1	a	b	c
1	1	a	b	c
a	1	1	a	a
b	1	1	1	a
c	1	a	a	1

Let A be a vague set in X defined as follows:

$$
A:=\{\langle 1,[0.7,0.2]\rangle,\langle a,[0.5,0.3]\rangle,\langle b,[0.5,0.3]\rangle,\langle c,[0.7,0.2]\rangle\}
$$

It is routine to verify that A is a vague filter of X.
Proposition 4.3. Every vague filter A of X satisfies:

$$
\begin{equation*}
(\forall x, y \in X)\left(x \leq y \Rightarrow V_{A}(x) \leq V_{A}(y)\right) \tag{4.3}
\end{equation*}
$$

Proof. Let $x, y \in X$ be such that $x \leq y$. Then $x * y=1$ and so

$$
\begin{aligned}
t_{A}(y) & \geq \min \left\{t_{A}(x * y), t_{A}(x)\right\}=\min \left\{t_{A}(1), t_{A}(x)\right\}=t_{A}(x), \\
1-f_{A}(y) & \geq \min \left\{1-f_{A}(x * y), 1-f_{A}(x)\right\}=1-f_{A}(x) .
\end{aligned}
$$

This shows that $V_{A}(y) \geq V_{A}(x)$.
Proposition 4.4. Every vague filter A of X satisfies:

$$
\begin{equation*}
(\forall x, y, z \in X)\left(V_{A}(x * z) \geq \operatorname{imin}\left\{V_{A}(x *(y * z)), V_{A}(y)\right\}\right) . \tag{4.4}
\end{equation*}
$$

Proof. Using (c2) and (BE4), we have

$$
\begin{aligned}
V_{A}(x * z) & \geq \operatorname{imin}\left\{V_{A}(y *(x * z)), V_{A}(y)\right\} \\
& =\operatorname{imin}\left\{V_{A}(x *(y * z)), V_{A}(y)\right\}
\end{aligned}
$$

for all $x, y, z \in X$.
Theorem 4.5. If A is a vague set in X satisfying (c1) and (4.4), then A is a vague filter of X.

Proof. Taking $x:=1$ in (4.4) and using (BE3), we have

$$
\begin{aligned}
V_{A}(z) & =V_{A}(1 * z) \\
& \geq \operatorname{imin}\left\{V_{A}(1 *(y * z)), V_{A}(y)\right\} \\
& =\operatorname{imin}\left\{V_{A}(y * z), V_{A}(y)\right\}
\end{aligned}
$$

for all $y, z \in X$. Hence A is a vague filter of X.
Corollary 4.6. Let A be a vague set in X. Then A is a vague filter of X if and only if it satisfies (c1) and (4.4).

Theorem 4.7. Let A be a vague set in X. Then A is a vague filter of X if and only if it satisfies the following conditions:

$$
\begin{gather*}
(\forall x, y \in X)\left(V_{A}(y * x) \geq V_{A}(x)\right), \tag{4.5}\\
(\forall x, a, b \in X)\left(V_{A}((a *(b * x)) * x) \geq \operatorname{imin}\left\{V_{A}(a), V_{A}(b)\right\}\right) . \tag{4.6}
\end{gather*}
$$

Proof. Assume that A is a vague filter of X. Using (c2), Proposition 2.2, and (c1), we get

$$
\begin{aligned}
V_{A}(y * x) & \geq \operatorname{imin}\left\{V_{A}(x *(y * x)), V_{A}(x)\right\} \\
& =\operatorname{imin}\left\{V_{A}(1), V_{A}(x)\right\}=V_{A}(x)
\end{aligned}
$$

for all $x, y \in X$.

$$
\begin{aligned}
V_{A}((a *(b * x)) * x) & \geq \operatorname{imin}\left\{V_{A}((a *(b * x)) *(b * x)), V_{A}(b)\right\} \\
& \geq \operatorname{imin}\left\{V_{A}(a), V_{A}(b)\right\} .
\end{aligned}
$$

Conversely, let A be a vague set in X satisfying conditions (4.5) and (4.6). If we take $y:=x$ in (4.5), then $V_{A}(1)=V_{A}(x * x) \geq V_{A}(x)$ for all $x \in X$. Using (4.6), we obtain

$$
\begin{aligned}
V_{A}(y) & =V_{A}(1 * y) \\
& =V_{A}(((x * y) *(x * y)) * y) \\
& \geq \operatorname{imin}\left\{V_{A}(x * y), V_{A}(x)\right\}
\end{aligned}
$$

for all $x, y \in X$. Hence A is a vague filter of X.
Proposition 4.8. Let A be a vague set in X. Then A is a vague filter of X if and only if it satisfies:

$$
\begin{equation*}
(\forall x, y, z \in X)\left(z \leq x * y \Rightarrow V_{A}(y) \geq \operatorname{imin}\left\{V_{A}(x), V_{A}(z)\right\}\right) \tag{4.7}
\end{equation*}
$$

Proof. Assume that A is a vague filter of X. Let $x, y, z \in X$ be such that $z \leq x * y$. By Proposition 4.3 and (c2), we have

$$
\begin{aligned}
V_{A}(y) & \geq \operatorname{imin}\left\{V_{A}(x * y), V_{A}(x)\right\} \\
& \geq \operatorname{imin}\left\{V_{A}(z), V_{A}(x)\right\}
\end{aligned}
$$

Conversely, suppose that A satisfies (4.7). By (BE2), we have $x \leq x * 1=1$. Hence $V_{A}(1) \geq \operatorname{imin}\left\{V_{A}(x), V_{A}(x)\right\}=V_{A}(x)$ by (4.7). Thus (c1) is valid. Using (BE1) and (BE4), we obtain $x \leq(x * y) * y$ for all $x, y \in X$. It follows from (4.7) that $V_{A}(y) \geq \operatorname{imin}\left\{V_{A}(x * y), V_{A}(x)\right\}$. Hence (c2) holds. Therefore A is a vague filter of X.

As a generalization of Proposition 4.8, we have the following results.
Theorem 4.9. If a vague set A in X is a vague filter of X, then

$$
\begin{equation*}
\prod_{i=1}^{n} w_{i} * x=1 \Rightarrow V_{A}(x) \geq \operatorname{imin}\left\{V_{A}\left(w_{i}\right) \mid i=1, \ldots, n\right\} \tag{4.8}
\end{equation*}
$$

for all $x, w_{1}, \ldots, w_{n} \in X$, where $\prod_{i=1}^{n} w_{i} * x=w_{n} *\left(w_{n-1} *\left(\cdots *\left(w_{1} * x\right) \cdots\right)\right)$.
Proof. The proof is by induction on n. Let A be a vague filter of X. By Proposition 4.3 and (4.7), we know that the condition (4.8) is valid for $n=1,2$. Assume that A satisfies the condition (4.8) for $n=k$, i.e.,

$$
\prod_{i=1}^{k} w_{i} * x=1 \Rightarrow V_{A}(x) \geq \operatorname{imin}\left\{V_{A}\left(w_{i}\right) \mid i=1, \ldots, k\right\}
$$

for all $x, w_{1}, \ldots, w_{k} \in X$. Let $x, w_{1}, \ldots, w_{k}, w_{k+1} \in X$ be such that $\prod_{i=1}^{k+1} w_{i} *$ $x=1$. Then

$$
V_{A}\left(w_{1} * x\right) \geq \operatorname{imin}\left\{V_{A}\left(w_{j}\right) \mid j=2, \ldots, k+1\right\}
$$

Since A is a vague filter of X, it follows from (c2) that

$$
\begin{aligned}
V_{A}(x) & \left.\geq \operatorname{imin}\left\{V_{A}\left(w_{1} * x\right), V_{A}\left(w_{1}\right)\right)\right\} \\
& \geq \operatorname{imin}\left\{V_{A}\left(w_{1}\right),\left\{V_{A}\left(w_{j}\right) \mid j=2, \ldots, k+1\right\}\right\} \\
& =\operatorname{imin}\left\{V_{A}\left(w_{j}\right) \mid j=1, \ldots, k+1\right\} .
\end{aligned}
$$

This completes the proof.
Now we consider the converse of Theorem 4.9.
Theorem 4.10. Let A be a vague set in X satisfying the condition (4.8). Then A is a vague filter of X.

Proof. Note that $\underbrace{1 *(1 *(1 * \cdots(1 * x)) \cdots)=x \text {. By (BE2), we have } x \leq x * 1=~=~=~}$

1. Hence $V_{A}(1) \geq V_{A}(x)$ for all $x \in X$. Thus (c1) is valid. Let $x, y, z \in X$ be such that $z \leq x * y$. Then

$$
1=z *(x * y)=z *(\underbrace{1 * \cdots(1 *(1}_{n-2 \text { times }} *(x * y))) \cdots))
$$

and so

$$
\begin{aligned}
V_{A}(y) & \geq \operatorname{imin}\left\{V_{A}(z), V_{A}(x), V_{A}(1)\right\} \\
& =\operatorname{imin}\left\{V_{A}(z), V_{A}(x)\right\} .
\end{aligned}
$$

Hence by Proposition 4.8, we conclude that A is a vague filter of X.
Theorem 4.11. Let A be a vague filter of X. Then for any $\alpha, \beta \in[0,1]$, the vague-cut $A_{(\alpha, \beta)}$ is a crisp filter of X.

Proof. Obviously, $1 \in A_{(\alpha, \beta)}$. Let $x, y \in X$ be such that $x \in A_{(\alpha, \beta)}$ and $x * y \in A_{(\alpha, \beta)}$. Then $V_{A}(x) \geq[\alpha, \beta]$, i.e., $t_{A}(x) \geq \alpha$ and $1-f_{A}(x) \geq \beta$; and $V_{A}(x * y) \geq[\alpha, \beta]$, i.e., $t_{A}(x * y) \geq \alpha$ and $1-f_{A}(x * y) \geq \beta$. It follows from (4.2) that

$$
\begin{aligned}
t_{A}(y) & \geq \min \left\{t_{A}(x * y), t_{A}(x)\right\} \geq \alpha, \\
1-f_{A}(y) & \geq \min \left\{1-f_{A}(x * y), 1-f_{A}(y)\right\} \geq \beta
\end{aligned}
$$

so that $V_{A}(y) \geq[\alpha, \beta]$. Hence $y \in A_{(\alpha, \beta)}$ and so $A_{(\alpha, \beta)}$ is a filter of X.
The filter like $A_{(\alpha, \beta)}$ are also called vague-cut filters of X. Clearly we have the following results.

Proposition 4.12. Let A be a vague filter of X. Two vague-cut filters $A_{(\alpha, \beta)}$ and $A_{(\omega, \gamma)}$ with $[\alpha, \beta]<[\omega, \gamma]$ are equal if and only if there is no $x \in X$ such that

$$
[\alpha, \beta] \leq V_{A}(x) \leq[\omega, \gamma] .
$$

Theorem 4.13. Let X be a finite $B E$-algebra and let A be a vague filter of X. Consider the set $V(A)$ given by

$$
V(A):=\left\{V_{A}(x) \mid x \in X\right\} .
$$

Then A_{i} are the only vague-cut filters of X, where $A_{i} \in V(A)$.
Proof. Consider $\left[a_{1}, a_{2}\right] \in I[0,1]$ where $\left[a_{1}, a_{2}\right] \notin V(A)$. If $[\alpha, \beta]<\left[a_{1}, a_{2}\right]<$ $[\omega, \gamma]$ where $[\alpha, \beta],[\omega, \gamma] \in V(A)$, then $A_{(\alpha, \beta)}=A_{\left(a_{1}, a_{2}\right)}=A_{(\omega, \gamma)}$. If $\left[a_{1}, a_{2}\right]<$ $\left[a_{1}, a_{3}\right]$ where $\left[a_{1}, a_{3}\right]=\operatorname{imin}\left\{V_{A}(x) \mid x \in X\right\}$, then $A_{\left(a_{1}, a_{3}\right)}=X=A_{\left(a_{1}, a_{2}\right)}$. Hence for any $\left[a_{1}, a_{2}\right] \in I[0,1]$, the vague-cut filter $A_{\left(a_{1}, a_{2}\right)}$ is one of $A_{i} \in V(A)$. This competes the proof.
Theorem 4.14. Any filter F of X is a vague-cut filter of some vague filter of X.

Proof. Consider the vague set A of X given by

$$
V_{A}= \begin{cases}{[\alpha, \alpha]} & \text { if } x \in F \\ {[0,0]} & \text { if } x \notin F\end{cases}
$$

where $\alpha \in(0,1)$. Since $1 \in F$, we have $V_{A}(1)=[\alpha, \alpha] \geq V_{A}(x)$ for all $x \in X$. Let $x, y \in X$. If $y \in F$, then

$$
V_{A}(y)=[\alpha, \alpha] \geq \operatorname{imin}\left\{V_{A}(x * y), V_{A}(x)\right\} .
$$

Assume that $y \notin F$. Then $x \notin F$ or $x * y \notin F$. It follows that

$$
V_{A}(y)=[0,0]=\operatorname{imin}\left\{V_{A}(x * y), V_{A}(x)\right\} .
$$

Thus A is a vague filter of X. Clearly $F=A_{(\alpha, \alpha)}$.
Theorem 4.15. Let A be a vague filter of X. Then the set

$$
F:=\left\{x \in X \mid V_{A}(x)=V_{A}(1)\right\}
$$

is a crisp filter of X.
Proof. Obviously $1 \in F$. Let $x, y \in X$ be such that $x * y \in F$ and $x \in F$. Then $V_{A}(x * y)=V_{A}(1)=V_{A}(x)$, and so

$$
V_{A}(y) \geq \operatorname{imin}\left\{V_{A}(x * y), V_{A}(x)\right\}=V_{A}(1)
$$

by (c2). Since $V_{A}(1) \geq V_{A}(y)$ for all $y \in X$, it follows that $V_{A}(y)=V_{A}(1)$ and so that $y \in F$. Therefore F is a crisp filter of X.

References

[1] S. S. Ahn, Y. U. Cho, and C. H. Park, Vague quick ideals of BCK/BCI-algebras, Honam Math. J. 30 (2008), no. 1, 65-74.
[2] H. G. Baik, On vague BH-subalgebra of BH-algebras, Int. Math. Forum 4 (2009), no. 17-20, 823-829.
[3] R. Biswas, Vague groups, Internat. J. Comput. Cognition 4 (2006), 20-23.
[4] Q. P. Hu and X. Li, On BCH-algebras, Math. Sem. Notes Kobe Univ. 11 (1983), no. 2, part 2, 313-320.
[5] , On proper BCH-algebras, Math. Japon. 30 (1985), no. 4, 659-661.
[6] K. Iséki and S. Tanaka, An introduction to theory of BCK-algebras, Math. Japon. 23 (1978), no. 1, 1-26.
[7] K. Iséki, On BCI-algebras, Math. Sem. Notes Kobe Univ. 8 (1980), no. 1, 125-130.
[8] Y. B. Jun and C. H. Park, Vague ideals of subtraction algebra, Int. Math. Forum. 2 (2007), no. 57-60, 2919-2926.
[9] Y. B. Jun, E. H. Roh, and H. S. Kim, On BH-algebras, Sci. Math. 1 (1998), no. 3, 347-354.
[10] C. B. Kim and H. S. Kim, On BM-algebras, Sci. Math. Jpn. 63 (2006), no. 3, 421-427.
[11] H. S. Kim and Y. H. Kim, On BE-algebras, Sci. Math. Jpn. 66 (2007), no. 1, 113-116.
[12] H. S. Kim, Y. H. Kim, and J. Neggers, Coxeter algebras and pre-Coxeter algebras in Smarandache setting, Honam Math. J. 26 (2004), no. 4, 471-481.
[13] K. J. Lee, Y. H. Kim, and Y. U. Cho, Vague set theory based on d-algebras, J. Appl. Math. Informatics 26 (2008), 1221-1232.
[14] K. L. Lee, K. S. So, and K. S. Bang, Vague BCK/BCI-algebras, J. Korean Soc. Math. Educ. Ser. B Pure Appl. Math. 15 (2008), no. 3, 297-308.
[15] J. Meng and Y. B. Jun, BCK-Algebras, Kyung Moon Sa, Co., Seoul, 1994.
[16] J. Neggers and H. S. Kim, On d-algebras, Math. Slovaca 49 (1999), no. 1, 19-26.
[17] _ On B-algebras, Mat. Vesnik 54 (2002), no. 1-2, 21-29.
[18] , A fundamental theorem of B-homomorphism for B-algebras, Int. Math. J. 2 (2002), no. 3, 207-214.
[19] C. H. Park, Vague deductive systems of subtraction algebras, J. Appl. Math. Informatics 26 (2008), 427-436.
[20] A. Walendziak, Some axiomatizations of B-algebras, Math. Slovaca 56 (2006), no. 3, 301-306.

Sun Shin Ahn
Department of Mathematics Education
Dongguk University
Seoul 100-715, Korea
E-mail address: sunshine@dongguk.edu
Jung Mi Ko
Department of Mathematics
Gangneung-Wonju National University
Gangneung 210-702, Korea
E-mail address: jmko@gwnu.ac.kr

