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CENTRAL SCHEMES WITH LAX-WENDROFF TYPE

TIME DISCRETIZATIONS

Suyeon Shin and Woonjae Hwang

Abstract. The semi-discrete central scheme and central upwind scheme
use Runge-Kutta (RK) time discretization. We do the Lax-Wendroff
(LW) type time discretization for both schemes. We perform numeri-

cal experiments for various problems including two dimensional Riemann
problems for Burgers’ equation and Euler equations. The results show
that the LW time discretization is more efficient in CPU time than the

RK time discretization while maintaining the same order of accuracy.

1. Introduction

The central scheme was introduced by Nessyahu and Tadmor in 1990 [9].
Since then, many works are done by using central scheme [3, 5, 6, 7]. The
central scheme is very convenient because it doesn’t require Riemann solvers.
As an advanced version, the central upwind scheme was introduced by Kuganov
et al. in 2001 [4].

Since Liu et al. introduced theWeighted Essentially Non-Oscillatory(WENO)
scheme, WENO became very popular for high-order computations [8]. Original
WENO uses Runge-Kutta (RK) time discretization. Some works for WENO
with Lax-Wendroff (LW) type time discretization were done instead of RK time
discretization [10, 11, 12].

The semi-discrete central scheme also uses the RK time discretization. In
this paper, we do the LW type time discretization for central scheme and central
upwind scheme. In Section 2, we show the Lax-Wendroff (LW) type time
discretization for 1-D and 2-D scalar equations and systems. In Section 3, we
briefly explain central scheme and central upwind scheme. In Section 4, we do
numerical experiments for the various problems. We apply central scheme and
central upwind scheme with LW and RK time discretizations for 1-D and 2-
D linear advection equation, Burgers equation, Buckley-Leverett equation and
Euler equations. We compare the errors and check the order of accuracy for
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both RK and LW time discretizations with smooth initial conditions. We also
consider two dimensional Riemann problems for scalar equations and systems.
For two dimensional Riemann problems, see [1, 2, 7, 13] for examples. To check
the efficiency, we compare the CPU time of two-dimensional Riemann problems
for both time discretizations. The conclusion follows in Section 5.

2. Lax-Wendroff type time discretization

2.1. One-dimensional scalar equations

Consider the initial value problem for the one-dimensional scalar conserva-
tion laws: {

ut + f(u)x = 0

u(x, 0) = u0(x).

We explain the procedures for the LW type time discretization [12]. By a
temporal Taylor expansion we obtain

(1) u(x, t+△t) = u(x, t) +△tu′ +
△t2

2
u′′ +

△t3

6
u′′′ +

△t4

24
u(4) + · · · .

In this paper, we use 3rd order accuracy in time. So we need to approximate
the first 3 time derivatives u′, u′′ and u′′′. This procedure can be extended to
any higher orders as desired.

Step 1. The reconstruction of the first derivative u′ = −f(u)x is obtained
by the second order central scheme.

Step 2. The reconstruction of the second time derivative u′′ = −(f ′(u)u′)x is
obtained as follows. Let gi = f ′(ui)u

′
i, where ui and u′

i are the point values of
u and u′ at the point (xi, t

n) computed in Step 1 described above. We can use
a simple central difference formula to approximate u′′ at the point (xi, t

n)(i.e.
u′′ ≈ − 1

2∆x (gi+1 − gi−1)).
Step 3. The reconstruction of the third time derivative u′′′ = −(f ′(u)u′′ +

f ′′(u)(u′)2)x is obtained as follows. Let gi = f ′(ui)u
′′
i + f ′′(ui)(u

′
i)

2; here u′
i

and u′′
i are the point values of u′ and u′′ at the point (xi, t

n) computed in Step
1 and Step 2 above. Then we can get the approximation of u′′′ by the same
way as in Step 2.

2.2. One-dimensional systems

Consider the initial value problem for the one-dimensional system of conser-
vation laws: {

∂
∂tu(x, t) +

∂
∂xf(u(x, t)) = 0,

u(x, 0) = u0(x),
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where u : R× [0,∞) → Rm is an m-dimensional vector of conserved quantities,
and f : Rm → Rm is the vector valued flux function. Then, we have

u1

u2

...
um


t

+


f1(u)
f2(u)

...
fm(u)


x

=


0
0
...
0

 ,

i.e., 
u1

u2

...
um


t

+


∂f1
∂u1

∂f1
∂u2

· · · ∂f1
∂um

∂f2
∂u1

∂f2
∂u2

· · · ∂f2
∂um

...
∂fm
∂u1

∂fm
∂u2

· · · ∂fm
∂um




u1

u2

...
um


x

=


0
0
...
0

 .

We apply the temporal Taylor expansion (1) with an m-dimensional vector
u.

Step 1. The reconstruction of the first derivative u′ = −f(u)x is obtained
by the second order central scheme.

Step 2. The reconstruction of the second time derivative u′′ = −(f ′(u)u′)x
is obtained as follows.
Let 

g1
g2
...
gm

 =


∂f1
∂u1

∂f1
∂u2

· · · ∂f1
∂um

∂f2
∂u1

∂f2
∂u2

· · · ∂f2
∂um

...
∂fm
∂u1

∂fm
∂u2

· · · ∂fm
∂um




u′
1

u′
2
...

u′
m

 ,

where ui and u′
i are the point values of u and u′ at the point (xi, t

n) computed
in Step 1 described above. We can use a simple central difference formula to
approximate u′′ at the point (xi, t

n).
Step 3. The reconstruction of the third time derivative u′′′ = −(f ′(u)u′′ +

f ′′(u)(u′)2)x is obtained as follows. Let
g1
g2
...
gm

 =


∂f1
∂u1

∂f1
∂u2

· · · ∂f1
∂um

∂f2
∂u1

∂f2
∂u2

· · · ∂f2
∂um

...
∂fm
∂u1

∂fm
∂u2

· · · ∂fm
∂um




u′′
1

u′′
2
...

u′′
m



+


∂2f1
∂u2

1

∂2f1
∂u2

2
· · · ∂2f1

∂u2
m

∂2f2
∂u2

1

∂2f2
∂u2

2
· · · ∂2f2

∂u2
m

...
∂2fm
∂u2

1

∂2fm
∂u2

2
· · · ∂2fm

∂u2
m




(u′
1)

2

(u′
2)

2

...
(u′

m)2

 ,
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here u′
i and u′′

i are the point values of u′ and u′′ at the point (xi, t
n) computed

in Step 1 and Step 2 above. Then we can get the approximation of u′′′ by the
same way as in Step 2.

2.3. Two-dimensional scalar equations

Consider the initial value problem for two-dimensional conservation laws:{
ut + f(u)x + g(u)y = 0,

u(x, y, 0) = u0(x, y).

By a temporal Taylor expansion we obtain

(2) u(x, y, t+△t) = u(x, y, t) +△tu′ +
△t2

2
u′′ +

△t3

6
u′′′ +

△t4

24
u(4) + · · · .

The first time derivative u′ = −f(u)x − g(u)y is approximated by the second
order central scheme. The second order time derivative is u′′ = −(f ′(u)u′)x −
(g′(u)u′)y, and the third order time derivative is u′′′ = −(f ′′(u)(u′)2+f ′(u)u′′)x
−(g′′(u)(u′)2 + g′(u)u′′)y.

Step 1. The reconstruction of the first derivative u′ = −f(u)x − g(u)y is
obtained by the second order central scheme.

Step 2. The reconstruction of the second time derivative u′′ = −(f ′(u)u′)x−
(g′(u)u′)y is obtained as follows. Let li = f ′(ui)u

′
i and ni = g′(ui)u

′
i, where

ui and u′
i are the point values of u and u′ at the point (xi, yi, t

n) computed
in Step 1 described above. We can use a simple central difference formula
to approximate u′′ at the point (xi, yi, t

n) (i.e., u′′ ≈ − 1
2∆x (li+1 − li−1) −

1
2∆y (ni+1 − ni−1)).

Step 3. The reconstruction of the third time derivative u′′′ = −(f ′′(u)(u′)2+
f ′(u)u′′)x − (g′′(u)(u′)2 + g′(u)u′′)y is obtained as follows. Let li = f ′(ui)u

′′
i +

f ′′(ui)(u
′
i)

2 and ni = g′(ui)u
′′
i +g′′(ui)(u

′
i)

2; here u′
i and u′′

i are the point values
of u′ and u′′ at the point (xi, yi, t

n) computed in Step 1 and Step 2 above. Then
we can get the approximation of u′′′ by the same way as in Step 2.

2.4. Two-dimensional systems

Consider the initial value problem for the two-dimensional system of conser-
vation laws:{

∂
∂tu(x, y, t) +

∂
∂xf(u(x, y, t)) +

∂
∂y g(u(x, y, t)) = 0,

u(x, y, 0) = u0(x, y),

where u : R2×[0,∞) → Rm is an m-dimensional vector of conserved quantities,
and f, g : Rm → Rm are the vector valued flux function. Then, we have

u1

u2

...
um


t

+


f1(u)
f2(u)

...
fm(u)


x

+


g1(u)
g2(u)
...

gm(u)


y

=


0
0
...
0

 ,
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i.e.,


u1

u2

...
um


t

+


∂f1
∂u1

∂f1
∂u2

· · · ∂f1
∂um

∂f2
∂u1

∂f2
∂u2

· · · ∂f2
∂um

...
∂fm
∂u1

∂fm
∂u2

· · · ∂fm
∂um




u1

u2

...
um


x

+


∂g1
∂g1

∂g1
∂u2

· · · ∂g1
∂um

∂g2
∂u1

∂g2
∂u2

· · · ∂g2
∂um

...
∂gm
∂u1

∂gm
∂u2

· · · ∂gm
∂um




u1

u2

...
um


y

=


0
0
...
0

 .

We apply the temporal Taylor expansion (2) with an m-dimensional vector
u.

Step 1. The reconstruction of the first derivative u′ = −f(u)x − g(u)y is
obtained by the second order central scheme.

Step 2. The reconstruction of the second time derivative u′′ = −(f ′(u)u′)x−
(g′(u)u′)y is obtained as follows.

Let


l1
l2
...
lm

 =


∂f1
∂u1

∂f1
∂u2

· · · ∂f1
∂um

∂f2
∂u1

∂f2
∂u2

· · · ∂f2
∂um

...
∂fm
∂u1

∂fm
∂u2

· · · ∂fm
∂um




u′
1

u′
2
...

u′
m



and


n1

n2

...
nm

 =


∂g1
∂u1

∂g1
∂u2

· · · ∂g1
∂um

∂g2
∂u1

∂g2
∂u2

· · · ∂g2
∂um

...
∂gm
∂u1

∂gm
∂u2

· · · ∂gm
∂um




u′
1

u′
2
...

u′
m

 ,

where ui and u′
i are the point values of u and u′ at the point (xi, yi, t

n) com-
puted in Step 1 described above. We can use a simple central difference formula
to approximate u′′ at the point (xi, yi, t

n).
Step 3. The reconstruction of the third time derivative u′′′ = −(f ′′(u)(u′)2+

f ′(u)u′′)x − (g′′(u)(u′)2 + g′(u)u′′)y is obtained as follows.
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Let 
l1
l2
...
lm

 =


∂f1
∂u1

∂f1
∂u2

· · · ∂f1
∂um

∂f2
∂u1

∂f2
∂u2

· · · ∂f2
∂um

...
∂fm
∂u1

∂fm
∂u2

· · · ∂fm
∂um




u′′
1

u′′
2
...

u′′
m



+


∂2f1
∂u2

1

∂2f1
∂u2

2
· · · ∂2f1

∂u2
m

∂2f2
∂u2

1

∂2f2
∂u2

2
· · · ∂2f2

∂u2
m

...
∂2fm
∂u2

1

∂2fm
∂u2

2
· · · ∂2fm

∂u2
m




(u′
1)

2

(u′
2)

2

...
(u′

m)2


and 

n1

n2

...
nm

 =


∂g1
∂u1

∂g1
∂u2

· · · ∂g1
∂um

∂g2
∂u1

∂g2
∂u2

· · · ∂g2
∂um

...
∂gm
∂u1

∂gm
∂u2

· · · ∂gm
∂um




u′′
1

u′′
2
...

u′′
m



+


∂2g1
∂u2

1

∂2g1
∂u2

2
· · · ∂2g1

∂u2
m

∂2g2
∂u2

1

∂2g2
∂u2

2
· · · ∂2g2

∂u2
m

...
∂2gm
∂u2

1

∂2gm
∂u2

2
· · · ∂2gm

∂u2
m




(u′
1)

2

(u′
2)

2

...
(u′

m)2

 ,

here u′
i and u′′

i are the point values of u′ and u′′ at the point (xi, yi, t
n) computed

in Step 1 and Step 2 above. Then we can get the approximation of u′′′ by the
same way as in Step 2.

3. Central scheme and central upwind scheme

We give a brief overview of central schemes [6]. Assume that we have al-
ready computed the piecewise-linear solution at time level tn, based on the
cell averages un

j , and have reconstructed approximate derivatives (ux)
n
j =

minmod(
un
j −un

j−1

∆x ,
un
j+1−un

j

∆x ). We now turn to evolve it in time. To begin with,
we estimate the local speed of propagation at the cell boundaries, xj+ 1

2
: the

upper bound is denoted by an
j+ 1

2

and is given by

(3) anj+ 1
2
:= max

ω∈C(u−
j+1

2

,u+

j+1
2

)
ρ(

∂f

∂u
(ω)),
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where

u+
j+ 1

2

:= un
j+1 −

∆x

2
(ux)

n
j+1 ≡ pj+1(xj+ 1

2
),

u−
j+ 1

2

:= un
j +

∆x

2
(ux)

n
j ≡ pj(xj+ 1

2
),

(4)

are the correspondent left and right intermediate values of u at xj+ 1
2
, and

C(u−
j+ 1

2

, u+
j+ 1

2

) is a curve in phase space connecting u−
j+ 1

2

and u+
j+ 1

2

via the

Riemann fan.
We consider the domains

(5) [xn
j− 1

2 ,r
, xn

j+ 1
2 ,l

]× [tn, tn+1] and [xn
j+ 1

2 ,l
, xn

j+ 1
2 ,r

]× [tn, tn+1],

with xn
j+ 1

2 ,l
:= xj+ 1

2
−△tan

j+ 1
2

and xn
j+ 1

2 ,r
:= xj+ 1

2
+△tan

j+ 1
2

.

Given the reconstruction {pnj (x)}, we integrate over these domains and obtain
the cell averages

wn+1
j =

1

xn
j+ 1

2 ,l
− xn

j− 1
2 ,r

[

∫ xn

j+1
2
,l

xn

j− 1
2
,r

pnj (x)dx

−
∫ tn+1

tn
(f(u(xn

j+ 1
2 ,l

, t))− f(u(xn
j− 1

2 ,r
, t)))dt]

(6)

and

wn+1
j+ 1

2

=
1

xn
j+ 1

2 ,r
− xn

j+ 1
2 ,l

[

∫ x
j+1

2

xn

j+1
2
,l

pnj (x)dx+

∫ xn

j+1
2
,r

x
j+1

2

pnj+1(x)dx

−
∫ tn+1

tn
(f(u(xn

j+ 1
2 ,r

, t))− f(u(xn
j+ 1

2 ,l
, t)))dt]

(7)

over the corresponding non-equal spatial cells.
To obtain the cell averages over the original grid of uniform, [xj− 1

2
, xj+ 1

2
], we

consider the piecewise-linear construction over the nonuniform cells at t = tn,

w̃n+1(x) :=
∑
j

{[wn+1
j+ 1

2

+ (ux)
n+1
j+ 1

2

(x− xj+ 1
2
)]1[xn

j+1
2
,l
,xn

j+1
2
,r
]

+ wn+1
j 1[xn

j− 1
2
,r
,xn

j+1
2
,l
]}.

(8)

The construction of this scheme is completed by projection w̃n+1 back onto
the original grid, i.e., we compute the cell averages

un+1
j =

1

△x

∫ x
j+1

2

x
j− 1

2

w̃n+1(x)dx(9)

at next time level. This leads to a fully discrete central scheme. We omit the
details of messy computations and continue semidiscrete framework.
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The time derivative of uj(t) is expressed with the help of (9) as

(10)
d

dt
uj(t) = lim

∆t→0

un+1
j − un

j

∆t
= lim

∆t→0

1

△t
[
1

△x

∫ x
j+1

2

x
j− 1

2

w̃n+1(x)dx− uj(t)].

We derive the semi-discrete scheme

(11)
d

dt
uj(t) = −

Hj+ 1
2
(t)−Hj− 1

2
(t)

∆x
,

with the numerical flux

(12) Hj+ 1
2
(t) :=

f(u+
j+ 1

2

(t)) + f(u−
j+ 1

2

(t))

2
−

aj+ 1
2
(t)

2
[u+

j+ 1
2

(t)− u−
j+ 1

2

(t)].

The intermediate values u±
j+ 1

2

are given by (4).

In two-dimensional case, the corresponding semi-discrete scheme for the sys-
tem

(13) ut + f(u)x + g(u)y = 0

is

(14)
d

dt
ūj,k(t) := −

Hx
j+ 1

2 ,k
(t)−Hx

j− 1
2 ,k

(t)

∆x
−

Hy

j,k+ 1
2

(t)−Hy

j,k− 1
2

(t)

∆y
.

Here, the numerical fluxes are a straightforward generalization of the one di-
mensional numerical flux,
(15)

Hx
j+ 1

2 ,k
(t) :=

f(u+
j+ 1

2 ,k
(t)) + f(u−

j+ 1
2 ,k

(t))

2
−

ax
j+ 1

2 ,k
(t)

2
[u+

j+ 1
2 ,k

(t)− u−
j+ 1

2 ,k
(t)],

and
(16)

Hy

j,k+ 1
2

(t) :=
g(u+

j,k+ 1
2

(t)) + g(u−
j,k+ 1

2

(t))

2
−

ay
j,k+ 1

2

(t)

2
[u+

j,k+ 1
2

(t)− u−
j,k+ 1

2

(t)],

which are expressed in terms of the intermediate values

u±
j+ 1

2 ,k
(t) := uj+1,k(t)∓

∆x

2
(ux)j+ 1

2±
1
2 ,k

(t),

u±
j,k+ 1

2

(t) := uj,k+1(t)∓
∆y

2
(uy)j,k+ 1

2±
1
2
(t),

(17)

and the local speeds, ax
j+ 1

2 ,k
(t) and ay

j,k+ 1
2

(t), are computed, e.g., by

(18)

axj+ 1
2 ,k

(t) := max
±

ρ(
∂f

∂u
(u±

j+ 1
2 ,k

(t))), ay
j,k+ 1

2

(t) := max
±

ρ(
∂g

∂u
(u±

j,k+ 1
2

(t))).

We introduce the central upwind scheme [4]. We require a piecewise linear
reconstruction of the form

(19) pnj,k(x, y) = ūn
j,k + (ux)

n
j,k(x− xj) + (uy)

n
j,k(y − yk).
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Here, (ux)
n
j,k and (uy)

n
j,k stand for an approximation to the derivatives ux(xj ,

yk, t
n) and uy(xj , yk, t

n), respectively. To ensure a nonoscillatory nature of the
reconstruction, one needs to use a nonlinear limiter in the computation of these
slopes. This can be done in many different ways. In this article, we have used
van Leer’s one-parameter family of the minmod limiters

(ux)j,k = minmod(θ
ūj+1,k − ūj,k

∆x
,
ūj+1,k − ūj−1,k

2∆x
, θ

ūj,k − ūj−1,k

∆x
),

(uy)j,k = minmod(θ
ūj,k+1 − ūj,k

∆x
,
ūj,k+1 − ūj,k−1

2∆x
, θ

ūj,k − ūj,k−1

∆x
),

(20)

where θ ∈ [1, 2], and the multivariable minmod function is defined by

minmod(x1, x2, . . .) :=


minj{xj}, if xj > 0 ∀j
maxj{xj}, if xj < 0 ∀j
0, otherwise.

Given the piecewise linear polynomial we can compute the reconstructed values
at the interfaces

uN
j,k = pnj,k(xj , yk+ 1

2
), uS

j,k = pnj,k(xj , yk− 1
2
),

uE
j,k = pnj,k(xj+ 1

2
, yk), uW

j,k = pnj,k(xj− 1
2
, yk).

(21)

These interfaces are moving with the corresponding speeds

a+
j+ 1

2 ,k
:= max{λN (

∂f

∂u
(uW

j+1,k)), λN (
∂f

∂u
(uE

j,k)), 0},

b+
j,k+ 1

2

:= max{λN (
∂g

∂u
(uS

j,k+1)), λN (
∂g

∂u
(uN

j,k)), 0},

a−
j+ 1

2 ,k
:= min{λ1(

∂f

∂u
(uW

j+1,k)), λ1(
∂f

∂u
(uE

j,k)), 0},

b−
j,k+ 1

2

:= min{λ1(
∂g

∂u
(uS

j,k+1)), λ1(
∂g

∂u
(uN

j,k)), 0},

(22)

where λN and λ1 denote the largest and the smallest eigenvalues of the Jaco-
bians ∂f

∂u and ∂g
∂u , respectively. Using second-order midpoint rule to approxi-

mate the spatial integrals along the faces of side cells results in the second-order
numerical fluxes
(23)

Hx
j+ 1

2 ,k
=

a+
j+ 1

2 ,k
f(uE

j,k)− a−
j+ 1

2 ,k
f(uW

j+1,k)

a+
j+ 1

2 ,k
− a−

j+ 1
2 ,k

+
a+
j+ 1

2 ,k
a−
j+ 1

2 ,k

a+
j+ 1

2 ,k
− a−

j+ 1
2 ,k

[uW
j+1,k − uE

j,k],

and
(24)

Hy

j,k+ 1
2

=
b+
j,k+ 1

2

g(uN
j,k)− b−

j,k+ 1
2

g(uS
j,k+1)

b+
j,k+ 1

2

− b−
j,k+ 1

2

+
b+
j,k+ 1

2

b−
j,k+ 1

2

b+
j,k+ 1

2

− b−
j,k+ 1

2

[uS
j,k+1 − uN

j,k].
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Table 1. L1 errors and orders of central scheme with RK
and LW time discretizations for 1-D linear advection equation
(Example 1)

RK LW
N L1 error order L1 error order
10 2.961E-01 3.036E-01
20 7.688E-02 1.9454 7.974E-02 1.9286
40 1.957E-02 1.9738 2.169E-02 1.8783
80 3.724E-03 2.3938 6.054E-03 1.8383
160 8.920E-04 2.0617 1.043E-03 2.5398
320 1.902E-04 2.2295 1.664E-04 2.6479

Table 2. L1 errors and orders of central scheme with RK and
LW time discretizations for 1-D Burgers’ equation (Example
2)

RK LW
N L1 error order L1 error order
10 3.600E-03 3.598E-03
20 9.545E-04 1.9152 9.555E-04 1.9128
40 2.106E-04 2.1804 2.114E-04 2.1761
80 5.573E-05 1.9178 5.591E-05 1.9189
160 1.257E-05 2.1489 1.260E-05 2.1501
320 3.076E-06 2.0306 3.079E-06 2.0327

4. Numerical experiments

Both central and central upwind schemes are second order accuracy in space.
We apply 3rd order accuracy in time for both RK and LW time discretizations.

4.1. Numerical experiments in 1D

Example 1. 1-D scalar (linear advection) equation: Consider the initial value
problem {

ut + ux = 0
u(x, 0) = sinx, 0 ≤ x ≤ 2π.

To compute the accuracy, we solve the linear advection equation with the
smooth initial condition sinx. The solution is computed at time T = 1 and the
CFL is 0.008. We use the L1 norm to compute the errors. Table 1 shows the
L1 errors and orders of the central scheme with RK and LW time discretiza-
tions. The results demonstrate that the order of both methods are 2nd and
their accuracies are comparable.
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Table 3. L1 errors and orders of central upwind scheme with
RK and LW time discretizations for 1-D Burgers’ equation
(Example 2)

RK LW
N L1 error order L1 error order
10 3.607E-03 3.609E-03
20 9.572E-04 1.9139 9.585E-04 1.9126
40 2.107E-04 2.1839 2.115E-04 2.1799
80 5.573E-05 1.9185 5.591E-05 1.9196
160 1.257E-05 2.1489 1.260E-05 2.1501
320 3.076E-06 2.0306 3.079E-06 2.0327

Example 2. 1-D scalar (Burgers’) equation: Consider the initial value problem{
ut +

(
1
2u

2
)
x
= 0

u(x, 0) = 0.5 + sinπx, 0 ≤ x ≤ 2.

Since Burgers’ equation is nonlinear equation, the shock forms even though the
initial condition is smooth. To check the accuracy, we compute the solution at
T = 0.5/π before shock is formed. The numerical solutions by central scheme
with RK and LW time discretizations are shown in Figure 1 (a). Tables 2 and
3 show the errors and orders of central scheme and central upwind scheme with
RK and LW time discretizations, respectively. As we see in linear advection
equation case (Example 1), the results show that the order of both methods
are 2nd and their accuracies are comparable. We also compute the solution by
central scheme with RK and LW time discretizations at T = 1.5/π after shock
is formed. This solution is shown in Figure 1 (b). In this example, CFL is
0.00305 and the number of grids N is 80.

Example 3. 1-D scalar (Buckley-Leverett) equation: Consider the Riemann
problem

ut + (
u2

u2 + a(1− u)2
)x = 0, a = 0.5

u(x, 0) =

{
1, −0.5 ≤ x ≤ 0
0, otherwise.

The numerical solutions are computed at T = 0.4 by central scheme with RK
and LW time discretizations and they are shown in Figure 2. For this example,
CFL is 0.05 and N is 160.

Example 4. 1-D system (Euler equations): One-dimensional Euler equations
can be written as  ρ

ρu
E


t

+

 ρu
ρu2 + p
u(E + p)


x

= 0
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where ρ, u, p, and E are density, velocity, pressure, and total energy, respec-
tively. The above system is closed by the equation of state, p = (γ − 1)(E −
ρu2/2) and γ = 1.4.

Example 4.1. We consider the 1-D Riemann problem for Euler equations
with the initial conditions

(ρ, u, p) =

{
(0.445, 0.698, 3.528), x ≤ 0,
(0.5, 0, 0.571), x > 0.

For this example, CFL is 0.05 and N is 200. Figure 3 (a) and (b) show the
numerical solutions at time T = 0.16 by central scheme and central upwind
with RK and LW time discretizations, respectively.

0 0.5 1 1.5 2
−0.5

0

0.5

1

1.5

x

t

RK
LW

(a) Smooth solution at T = 0.5/π

0 0.5 1 1.5 2
−0.5

0

0.5

1

1.5

x

t

RK
LW

(b) Shock solution at T = 1.5/π

Figure 1. Numerical solutions of cental scheme with RK and
LW time discretizations for 1-D Burgers’ equation (Example
2)
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1
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Figure 2. Numerical solutions of cental scheme with RK and
LW time discretizations for 1-D Buckley-Leverett equation at
time T = 0.4 (Example 3)
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Example 4.2. We consider the 1-D Riemann problem for Euler equations
with the initial conditions

(ρ, u, p) =

{
(1.0, 0, 1.0), x ≤ 0,
(0.125, 0, 0.1), x > 0.

For this example, CFL is 0.05 and grid N is 200. Figure 4 (a) and (b) show the
numerical solutions at time T = 0.1644 by central scheme and central upwind
with RK and LW time discretizations, respectively.

Example 4.3. We consider the 1-D Riemann problem for Euler equations
with the initial conditions

(ρ, u, p) =

{
(3.857143, 2.629369, 10.333333), x ≤ −4,
(1 + 0.2 ∗ sin(5x), 0, 1), x > −4.
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(a) central scheme
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(b) central upwind scheme

Figure 3. Numerical solutions of the density for Euler equa-
tions (Example 4.1)
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(a) central scheme
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(b) central upwind scheme

Figure 4. Numerical solutions of the density for Euler equa-
tions (Example 4.2)
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For this example, CFL is 0.05 and N is 400. Figure 5 (a) and (b) show the
numerical solutions at time T = 1.8 by central scheme and central upwind with
RK and LW time discretizations, respectively.
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(a) central scheme
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RK
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(b) central upwind scheme

Figure 5. Numerical solutions of the density for Euler equa-
tions (Example 4.3)

Example 4.4. We consider the Riemann problem for Euler equations with
the initial conditions

(ρ, u, p) =

 (1, 0, 2500), 0 ≤ x ≤ 0.1,
(1, 0, 0.025), 0.1 ≤ x ≤ 0.9,
(1, 0, 250), 0.9 ≤ x ≤ 1.

For this example, CFL is 0.475 and N is 400. Figure 6 (a), (b) and (c)
show the numerical solutions at time T = 0.01, T = 0.03 and T = 0.038 by
central scheme with RK and LW time discretizations, respectively. Figure 6
(a′), (b′) and (c′) show the numerical solutions at time T = 0.01, T = 0.03 and
T = 0.038 by central upwind scheme with RK and LW time discretizations,
respectively.

4.2. Numerical experiments in 2D

Example 5. 2-D scalar (linear advection) equation: Consider the initial value
problem {

ut + ux + uy = 0
u(x, y, 0) = sin(0.5 ∗ (x+ y)), 0 ≤ x, y ≤ 2π.

To check the accuracy in 2-D, we solve the 2-D linear advection equation with
the smooth initial condition sin(0.5∗(x+y)). The solution is computed at time
T = 1 and the CFL is 0.006. Table 4 shows the L1 errors and orders of the
central scheme with RK and LW time discretizations. The results show that
the order of both methods are 2nd and their accuracies are comparable.
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Example 6. 2-D scalar (Burgers’) equation: Consider the 2-D Burgers’ equa-
tion

ut +

(
1

2
u2

)
x

+

(
1

2
u2

)
y

= 0.
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(a) central scheme(T=0.01)
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(a′) central upwind scheme(T=0.01)
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(b) central scheme(T=0.03)
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(b′) central upwind scheme(T=0.03)
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(c) central scheme(T=0.038)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

1

2

3

4

5

6

x

t

RK
LW

(c′) central upwind scheme(T=0.038)

Figure 6. Numerical solutions of the density for Euler equa-
tions (Example 4.4)
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Table 4. L1 errors and orders of central scheme with RK
and LW time discretizations for 2-D linear advection equation
(Example 5)

RK LW
Nx ∗Ny L1 error order L1 error order
10*10 8.243E+00 8.300E+00
20*20 2.082E+00 1.9851 2.095E+00 1.9861
40*40 4.452E-01 2.2250 4.433E-01 2.2407
80*80 1.248E-01 1.8351 1.217E-01 1.8651

160*160 2.638E-02 2.2420 2.653E-02 2.1977
320*320 4.171E-03 2.6611 5.765E-03 2.2021

Table 5. L1 errors and orders of central scheme with RK and
LW time discretizations for 2-D Burgers’ equation (Example
6.1)

RK LW
Nx ∗Ny L1 error order L1 error order
10*10 4.445E-01 4.444E-01
20*20 1.056E-01 2.0743 1.054E-01 2.0759
40*40 2.141E-02 2.3018 2.153E-02 2.2916
80*80 5.686E-03 1.9126 5.706E-03 1.9160
160*160 1.305E-03 2.1232 1.322E-03 2.1096
320*320 3.411E-04 1.9360 3.486E-04 1.9233

Example 6.1. Consider the initial value problem for 2-D Burgers’ equation
with the initial condition

u(x, y, 0) = 0.5 + sin(0.5 ∗ π(x+ y)), 0 ≤ x, y ≤ 4.

To check the accuracy, we compute the solution for 2-D nonlinear Burgers’
equation at T = 0.5/π before shock is formed. Tables 5 and 6 show the errors
and orders of central scheme and central upwind scheme with RK and LW
time discretizations, respectively. The results show that the order of both
methods are 2nd and their accuracies are comparable just as in the case of
linear advection equation (Example 5). In this example, CFL is 0.003.

Example 6.2. We consider the 2-D Riemann problem for Burgers’ equation
with the initial conditions

u(x, y, 0) =


1 0 ≤ x, 0 ≤ y
2 0 ≥ x, 0 ≤ y
3 0 ≥ x, 0 ≥ y
4 0 ≤ x, 0 ≥ y.
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Table 6. L1 errors and orders of central upwind scheme with
RK and LW time discretizations for 2-D Burgers’ equation
(Example 6.1)

RK LW
Nx ∗Ny L1 error order error L1 order
10*10 6.432E-01 6.435E-01
20*20 1.630E-01 1.9807 1.629E-01 1.9818
40*40 3.649E-02 2.1590 3.657E-02 2.1555
80*80 9.113E-03 2.0016 9.142E-03 2.0001
160*160 2.375E-03 1.9399 2.393E-03 1.9337
320*320 5.157E-04 2.2034 5.262E-04 2.1852

Table 7. Comparisons of CPU time for 2-D Burgers’ equation
(Example 6.2)

RK LW
Central 187.89 87.84

Central Upwind 297.45 123.27

Figure 7 (a) and (a′) show the numerical solutions at time T = 0.1 by central
scheme with RK and LW time discretizations, respectively. Figure 7 (b) and
(b′) show the numerical solutions at time T = 0.1 by central upwind scheme
with RK and LW time discretizations, respectively. As we see in Figure 7, one
rarefaction and three shocks are formed in this example. For this example,
the CFL is 0.05 and N × N is 200 × 200. To compare the efficiency of RK
and LW time discretizations, we check the CPU time for central scheme and
central upwind scheme with RK and LW time discretizations. The results are
shown in Table 7. For central scheme, LW time discretization shows 53.2%
savings against RK time discretization. For central upwind scheme, the LW
time discretization shows 58.6% savings against the RK time discretization.

Example 6.3. We consider the 2-D Riemann problem for Burgers’ equation
with the initial conditions

u(x, y, 0) =


4 0 ≤ x, 0 ≤ y
2 0 ≥ x, 0 ≤ y
1 0 ≥ x, 0 ≥ y
3 0 ≤ x, 0 ≥ y.

Figure 8 (a) and (a′) show the numerical solutions at time T = 0.1 by central
scheme with RK and LW time discretizations, respectively. Figure 8 (b) and
(b′) show the numerical solutions at time T = 0.1 by central upwind scheme
with RK and LW time discretizations, respectively. Figure 8 shows that four
rarefactions are formed in this example. The CPU time for central scheme and
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Table 8. Comparisons of CPU time for 2-D Burgers’ equation
(Example 6.3)

RK LW
Central 187.23 87.53

Central Upwind 268.13 122.88

central upwind scheme with RK and LW time discretizations are shown in Table
8. The LW time discretization shows 53.3% and 54.2% savings against the RK
time discretization for central scheme and central upwind scheme, respectively.
For this example, the CFL is 0.05 and N ×N is 200× 200.
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(b) RK-central upwind
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(b′) LW-central upwind

Figure 7. Numerical solutions for 2-D Burgers’ equation (Ex-
ample 6.2)
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Example 7. 2-D system (Euler equations): Two-dimensional Euler equations
can be written as

ρ
ρu
ρv
E


t

+


ρu

ρu2 + p
ρuv

u(E + p)


x

+


ρv
ρuv

ρv2 + p
v(E + p)


y

= 0,

where ρ, u, v, p, and E are density, x velocity, y velocity, pressure, and total
energy, respectively. The above system is closed by the equation of state, E =
p

γ−1+
1
2ρ(u

2+v2), γ = 1.4. For this example, CFL = 0.1 andN×N = 200×200.
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Figure 8. Numerical solutions for 2-D Burgers’ equation (Ex-
ample 6.3)
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Example 7.1. We consider the 2-D Riemann problem for Euler equations
with the initial conditions

(p, ρ, u, v)(x, y, 0) =


(1, 1, 0, 0) if x > 0.5 and y > 0.5

(0.4, 0.5197,−0.7259, 0) if x < 0.5 and y > 0.5

(1, 1,−0.7259,−0.7259) if x < 0.5 and y < 0.5

(0.4, 0.5197, 0,−0.7259) if x > 0.5 and y < 0.5.

Figure 9 (a), (a′) and (b), (b′) show the numerical solutions at time T = 0.2
by central scheme and central upwind scheme with RK and LW time dis-
cretizations, respectively. The CPU time for central scheme and central upwind
scheme with RK and LW time discretizations are shown in Table 9. The LW
time discretization shows 48.6% and 53.7% savings against the RK time dis-
cretization for central scheme and central upwind scheme, respectively.
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Figure 9. Numerical solutions of the density for 2-D Euler
equations (Example 7.1)
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Table 9. Comparisons of CPU time for 2-D Euler equations
(Example 7.1)

RK LW
Central 397.23 203.98

Central Upwind 607.44 281.22

Example 7.2. We consider the 2-D Riemann problem for Euler equations
with the initial conditions

(p, ρ, u, v)(x, y, 0) =


(1.5, 1.5, 0, 0) if x > 0.5 and y > 0.5

(0.3, 0.5323, 1.206, 0) if x < 0.5 and y > 0.5

(0.029, 0.138, 1.206, 1.206) if x < 0.5 and y < 0.5

(0.3, 0.5323, 0, 1.206) if x > 0.5 and y < 0.5.
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Figure 10. Numerical solutions of the density for 2-D Euler
equations (Example 7.2)



894 SUYEON SHIN AND WOONJAE HWANG

Table 10. Comparisons of CPU time for 2-D Euler equations
(Example 7.2)

RK LW
Central 693.64 354.22

Central Upwind 1004.00 460.67

Figure 10 (a), (a′) and (b), (b′) show the numerical solutions at time T = 0.3
by central scheme and central upwind scheme with RK and LW time discretiza-
tions, respectively. The CPU time for central scheme and central upwind
scheme with RK and LW time discretizations are shown in Table 10. The
LW time discretization shows 48.9% and 54.1% savings against the RK time
discretization for central scheme and central upwind scheme, respectively.
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Figure 11. Numerical solutions of the density for 2-D Euler
equations (Example 7.3)
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Table 11. Comparisons of CPU time for 2-D Euler equation
(Example 7.3)

RK LW
Central 632.36 323.44

Central Upwind 986.39 447.56

Example 7.3. We consider the Riemann problem for Euler equations with
the initial conditions

(p, ρ, u, v)(x, y, 0) =


(1.1, 1.1, 0, 0) if x > 0.5 and y > 0.5

(0.35, 0.5065, 0.8939, 0) if x < 0.5 and y > 0.5

(1.1, 1.1, 0.8939, 0.8939) if x < 0.5 and y < 0.5

(0.35, 0.5065, 0, 0.8939) if x > 0.5 and y < 0.5.

Figure 11 (a), (a′) and (b), (b′) show the numerical solutions at time T =
0.25 by central scheme and central upwind scheme with RK and LW time
discretizations, respectively. The CPU time for central scheme and central
upwind scheme with RK and LW time discretizations are shown in Table 11.
The LW time discretization shows 48.9% and 54.6% savings against the RK
time discretization for central scheme and central upwind scheme, respectively.

5. Conclusions

We apply the Lax-Wendroff type (LW) time discretization for central scheme
and central upwind scheme. We test for various examples including 1-D and
2-D linear and nonlinear scalar equations and nonlinear systems such as Euler
equations. The results show that the LW time discretization maintains the same
order in accuracy as the Runge-Kutta (RK) time discretization, but it saves
much in CPU time. For central scheme, the LW time discretization shows 48.6−
53.3% savings against the RK time discretization. For central upwind scheme,
the LW time discretization shows 53.7 − 58.6% savings against the RK time
discretization. The LW time discretization is much more efficient in CPU time
than the RK time discretization for central scheme and especially for central
upwind scheme. We conclude that even though the LW time discretization is a
little bit messier than RK, LW greatly reduces the CPU time for both central
and central upwind scheme.
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