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CONJUGACY CLASSES OF AUTOMORPHISMS p-GROUPS

Rubén A. Hidalgo

Abstract. In this paper we provide examples of pairs of conformally
non-equivalent, but topologically equivalent, p-groups H1, H2 < Aut(S),

where S is a closed Riemann surface of genus g ≥ 2, so that S/Hj has
genus zero and all its cone points are of order equal to p.

1. Introduction

We denote by Aut(S) the group of conformal automorphisms of a Riemann
surface S. If S1 and S2 are Riemann surfaces, then we say that H1 < Aut(S1)
and H2 < Aut(S2) are topologically equivalent (respectively, conformally equiv-
alent) if there is an orientation preserving homeomorphism (respectively, a
conformal homeomorphism) f : S1 → S2 so that H2 = fH1f

−1. In this paper,
we assume S1 = S2. Sources for the matter of characterization of topologi-
cal conjugacy for surface automorphisms by certain purely algebraic data are
J. Nielsen [14], W. J. Harvey [12], and J. Gilmann [9]. In general, it is not
hard to construct an example of a closed Riemann surface S, of genus g ≥ 2,
and pairs H1,H2 < Aut(S), H1

∼= H2, so that H1 and H2 are topologically
non-equivalent.

If H < Aut(S), where S is a closed Riemann surface of genus g ≥ 2, and
R = S/H, then denote by Mg(H) the locus in Mg (the moduli space of
genus g) consisting of points parametrizing Riemann surfaces S′ which admit a
group H ′ of conformal automorphisms topologically equivalent to H. One has,
of course, Mg(H) = Mg(H

′). It is well known that Mg(H) is an irreducible
subvariety of Mg of dimension 3g′−3+r; where g′ is the genus of R and r is the
number of points over which the natural projection S → R is ramified ([5], [6]).
Moreover, Mg(H) fails to be normal if and only if there is a Riemann surface
S′ of genus g admitting two groups H1, H2 < Aut(S′) which are topologically
equivalent to H, but not conformally equivalent to each other ([5], [6]).
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From now on, let S be a closed Riemann surface of genus g ≥ 2, let p
be a prime, let G be a finite p-group, and let H1,H2 < Aut(S) be so that
H1

∼= H2
∼= G.

If G ∼= Zp and S/Hj (for j = 1, 2) has genus zero, then H1 and H2 are
conformally equivalent. This fact is consequence of a classical Castelnuovo-
Severi theorem [3] in the case that g > (p− 1)2 and, for the general case, this
was proved by González-Diez in [4]. An alternative proof of this result was
also obtained by Gromadzki [10]. If we drop the condition for S/Hj to be of
genus zero, then this may be false [6]; but if p ≥ 2γ+1, where γ is the genus of
S/Hj , then H1 and H2 are conformally equivalent [11] (in fact, the condition
p ≥ 2γ + 1 asserts that Hj is a p-Sylow subgroup of Aut(S)).

If p = 2 and G ∼= Z8, then in [7] there is a construction of (a 1-dimensional
family) a closed Riemann surface S of genus g = 9 and H1,H2 < Aut(S)
so that Hj

∼= Z8 are topologically equivalent but not conformally equivalent.
In this example, the quotient orbifolds S/Hj has signature (0; 4, 4, 8, 8). A
generalization has been provided in [2], where G ∼= Z2n+1 and n ≥ 2, so that
S/Hj (for j = 1, 2) has signature (0; 2n, 2n, 2n+1, 2n+1). Note that in these
examples, there are cone points of order different from the prime p = 2.

If G ∼= Zn
p , where n ≥ 2 is an integer, then in [8] it is proved that if S/Hj (for

j = 1, 2) has signature (0; p, n+1. . . , p), thenH1 andH2 are conformally equivalent.
This makes us to wonder if the above is true without this relation between the

exponent in the order of the group G and the number of ramification points in
S/Hj which, in the above, are respectively n and n+1. The following provides
counter-examples to such an expectation.

Theorem 1. (1) Let n ≥ 3 be an integer. Then there exists a prime pn so
that, for every prime p ≥ pn, there exists a closed Riemann surface S, of genus
g ≥ 2, and subgroups H1, H2 < Aut(S), H1

∼= H2
∼= Zn−1

p , with S/Hj of
signature of the form (0; p, . . . , p), which are topologically equivalent but not
conformally equivalent.

(2) There exists a closed Riemann surface S, of genus g = 5, and sub-
groups H1,H2 < Aut(S), H1

∼= H2
∼= Z2

2, with S/Hj of signature of the form
(0; 2, 2, 2, 2, 2), which are topologically equivalent but not conformally equiva-
lent.

2. Proof of Theorem 1

Let us consider an integer n ≥ 3 and p a prime (if p = 2, then we assume
that n ≥ 4). Let λ1, . . . , λn−2 ∈ C− {0, 1} be so that λi ̸= λj , for i ̸= j.

We assume that these values are so that the group of Möbius transformations
keeping invariant the set {∞, 0, 1, λ1, . . . , λn−2} is the trivial group.
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Let us consider the closed Riemann surface S defined by the following equa-
tions

S =


xp
1 + x2

p + xp
3 = 0

λ1x
p
1 + xp

2 + xp
4 = 0

...
λn−2x

p
1 + xp

2 + xp
n+1 = 0

 ⊂ Pn
C.

Let H = ⟨a1, . . . , an⟩ ∼= Zn
p , where aj is defined by multiplication of the coor-

dinate xj by e2πi/p. Set an+1 = (a1a2 · · · an)−1. Then an+1 is multiplication

of the coordinate xn+1 by e2πi/p.
It is well known [8] that H < Aut(S) with S/H of signature (0; p, n+1. . . , p)

and that H is the unique subgroup K, up to conjugation in Aut(S), satisfying
that K ∼= Zn

p and that S/K has such a signature. Moreover, we may identify
S/H with the orbifold whose Riemann surface structure is the Riemann sphere
and whose cone points (all of them of order p) are given by ∞, 0, 1, λ1, . . . ,
λn−2. The natural regular branched cover, with H as Deck group, is given by

π([x1 : · · · : xn+1]) = −
(
x2

x1

)p

.

The map π sends the set of fixed points of a1 to ∞; the set of fixed points
of a2 to 0; the set of fixed points of a3 to 1; and, for j ∈ {4, . . . , n+1}, it sends
the set of fixed points of aj to λj−3.

It is also known that π : S → S/H is a homology branched cover, that is, if
Γ is a Fuchsian group so that H2/Γ = S/H, then S = H2/Γ′, where Γ′ denotes
the derived subgroup of Γ, and H = Γ/Γ′.

Set H1 = ⟨a1, a2, . . . , an−1⟩ ∼= Zn−1
p and H2 = ⟨a2, a3, . . . , an⟩ ∼= Zn−1

p . It is

clear that, for j = 1, 2, S/Hj has signature (0; p, (n−1)p. . . , p).

Let us consider an orientation preserving homeomorphism f : Ĉ → Ĉ, of or-
der two, so that f(∞) = λn−3, f(0) = 0, f(1) = 1, f(λ1) = λ1, . . . , f(λn−4) =
λn−4, f(λn−2) = λn−2.

As π : S → S/H is a homology branched cover, the homeomorphism f lifts

to an orientation preserving homeomorphism f̂ : S → S so that fHf−1 = H
and, by the property of f at the cone point of S/H, that fH1f

−1 = H2, that
is, these two groups are topologically equivalent.

2.1. Part (1)

As a consequence of the results in [13], it is possible to find a prime number
pn so that, if p ≥ pn, then H is a normal subgroup of Aut(S). It follows that,
in this case, Aut(S)/H acts as a group of conformal automorphisms of the
orbifold S/H. As we have supposed that no Möbius transformation, different
from the identity, may keep invariant the set {∞, 0, 1, λ1, . . . , λn−2}, we have
that Aut(S) = H. It follows that, for p ≥ pn, the groups H1 and H2 cannot
be conformally equivalent.
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2.2. Part (2)

If p = 2 and n = 4, under the above conditions, we have (see [1]) that S is
a closed Riemann surface of genus 5 for which Aut(S) = H. If we set H1 =
⟨a1, a2⟩ ∼= Z2

2 and H2 = ⟨a1, a3⟩ ∼= Z2
2, then these two groups are topologically

equivalent but cannot be conformally equivalent.

3. A final remark

In [13] is proved that, if we fix γ, r ≥ 0 and s ≥ 1 integers so that 2γ−2+r >
0, then there exists a prime q = q(γ, r, s) with the following property: “if p ≥ q
is a prime, S is a closed Riemann surface of genus g ≥ 2, H1,H2 < Aut(S),
|H1| = |H2| = ps, S/Hj has genus γ and exactly r cone points, then H1 = H2”.
This property is not in contradiction with Theorem 1. In fact, in our family
of examples, the quotient S/H has signature (0; p, n+1. . . , p) and the quotients

S/Hj have signature (0; p, 2+(n−1)p. . . , p). We are considering primes p ≥ pn =
q(0, n+1, n). On the other hand, the prime q(0, 2+(n−1)p, n−1) is necessarily
bigger than p.
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[7] G. González-Diez and R. A. Hidalgo, Conformal versus topological conjugacy of auto-
morphisms on compact Riemann surfaces, Bull. London Math. Soc. 29 (1997), no. 3,
280–284.
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