DOI QR코드

DOI QR Code

Molecular Docking, 3D QSAR and Designing of New Quinazolinone Analogues as DHFR Inhibitors

  • Yamini, L. (Department of Chemistry, Nizam College, Osmania University) ;
  • Kumari, K. Meena (Department of Chemistry, Nizam College, Osmania University) ;
  • Vijjulatha, M. (Department of Chemistry, Nizam College, Osmania University)
  • Received : 2011.01.10
  • Accepted : 2011.06.01
  • Published : 2011.07.20

Abstract

The three dimensional quantitative structure activity relationship (3D QSAR) models were developed using Comparative molecular field analysis (CoMFA), comparative molecular similarity indices analysis (CoMSIA) and docking studies. The fit of Quinazolinone antifolates inside the active site of modeled bovine dihydrofolate reductase (DHFR) was assessed. Both ligand based (LB) and receptor based (RB) QSAR models were generated, these models showed good internal and external statistical reliability that is evident from the $q^2_{loo}$, $r^2_{ncv}$ and $r^2_{pred}$. The identified key features enabled us to design new Quinazolinone analogues as DHFR inhibitors. This study is a building bridge between docking studies of homology modeled bovine DHFR protein as well as ligand and target based 3D QSAR techniques of CoMFA and CoMSIA approaches.

Keywords

References

  1. Trimble, J. J.; Murthy, S. C. S.; Bakker, A.; Grassmann, R.;Desrosiers, R. C. Science 1988, 239, 1145. https://doi.org/10.1126/science.2830673
  2. Collin, J. Suckling, Enzyme Chemistry; Chapman and Hall Ltd.: 733 Third Avenue, NY, 1984; p 121.
  3. Suresha, G. P.; Prakasha, K. C.; Kapfo, W.; Gowda, D. C. E-J Chem. 2010, 7(2), 449. https://doi.org/10.1155/2010/979675
  4. Alagarsamy, V.; Muthukumar, V.; Pavalarani, N.; Vasanthanathan,P.; Revathi, R. Biol. Pharm. Bull. 2003, 26(4), 557. https://doi.org/10.1248/bpb.26.557
  5. Mani, C. P.; Yakaiah, T.; Raghu, R. R. A.; Narsaiah, B.; ChakraReddy, N.; Sridhar, V.; Venkateshwara, R. J. Eur. J. Med. Chem. 2007, 42, 147.
  6. Ravishankar, C. H.; Devender, R. A.; Bhaskar, R. A.; Malla, R. V.; Sattur, P. B. Curr. Sci. 1984, 53, 1069.
  7. Ouyang, G.; Zhang, P.; Xu, G.; Song, B.; Yang, S.; Jin, L.; Xue,W.; Hu, D.; Lu, P.; Chen, Z. Molecules 2006, 11, 383. https://doi.org/10.3390/11060383
  8. Martin, T. A.; Wheller, A. G.; Majewski, R. F.; Corrigan, J. R. J. Med. Chem. 1964, 7, 812. https://doi.org/10.1021/jm00336a033
  9. Dienei, J. B.; Dowalo, F.; Hoeven, H. V.; Bender, P.; Loev, B. J. Med. Chem. 1973, 16, 633. https://doi.org/10.1021/jm00264a012
  10. Jatav, V.; Mishra, P.; Kashaw, S.; Stables, J. P. Eur. J. Med. Chem. 2008, 4, 135.
  11. Ilangovan, P.; Ganguly, S.; Pandi, V. J. Pharm. Res. 2010, 3, 703.
  12. Chandrasekhar, V.; Raghurama, R. A.; Malla, R. V. Indian Drugs 1986, 3, 24.
  13. Naithani, P. K.; Gautam, P.; Srivastava, V. K.; Shankar, K. Indian J. Chem. 1989, 28B, 745.
  14. Magnus, N. A.; Confalone, P. N.; Storace, L.; Patel, M.; Wood, C. C.; Davis, W. P.; Parsons, R. L. J. Org. Chem. 2003, 68, 754. https://doi.org/10.1021/jo0263162
  15. Jantova, S.; Urbancikova, M.; Maliar, T.; Mikuldsova, M.; Rauko,P.; Cipak, L.; Kubikova, J.; Stankovsky, S.; Spirkova, K.Neoplasm. 2001, 48, 52.
  16. Sarah, T. R.; Ihsan, A.; Aboldahab et al. Bio. Org. Med. Chem. 2006, 14, 8608. https://doi.org/10.1016/j.bmc.2006.08.030
  17. Klebe, G.; Abraham, U.; Mietzner, T. J. Med. Chem. 1994, 37, 4130. https://doi.org/10.1021/jm00050a010
  18. Wold, S.; Ruhe, A.; Wold, H.; Dunn, W. J. I. SIAM J. Sci. Stat. Comput. 1984, 5, 735. https://doi.org/10.1137/0905052
  19. Cavalli, A.; Greco, G.; Novelliono, E.; Recanatini, M. Boiorg. Med. Chem. 2000, 8, 2771. https://doi.org/10.1016/S0968-0896(00)00203-0
  20. Boeckmann, B.; Bairoch, A.; Apwweiler, R.; Blatter, M. C.; Estreicher, A.; Gasteiger, E.; Martin, M. J.; Michoud, K.; O’Doonovan, C.; Phan, I.; Pilbout, S.; Schneider, M. Nucl. Acids Res. 2003, 31, 365. https://doi.org/10.1093/nar/gkg095
  21. Altschul, S. F.; Thomas, L. M.; Alejandro, A. S.; Jinghui, Z.;Zheng, Z.; Miller, W.; Lipman, D. J. Nucleic Acids Res. 1997, 25,3389. https://doi.org/10.1093/nar/25.17.3389
  22. Balazs, J.; Arpad, M. J. Mol. Grap. and Model. 2007, 25, 711. https://doi.org/10.1016/j.jmgm.2006.05.010
  23. Sali, A.; Blundell, T. L. J. Mol. Biol. 1993, 234, 779. https://doi.org/10.1006/jmbi.1993.1626
  24. Marti-Renom, M. A.; Stuart, A. C.; Fiser, A.; Sanchez, R.; Melo, F.; Sali, A. Annu. Rev. Biophys. Biomol. Struct. 2000, 29, 291. https://doi.org/10.1146/annurev.biophys.29.1.291
  25. Laskowski, R. A.; Mac, A. M. W.; Moss, D. S.; Thornton, J. M. J. Appl. Cryst. 1993, 26, 283. https://doi.org/10.1107/S0021889892009944
  26. Bowie, J. U.; Lüthy, R.; Eisenberg, D. Science 1991, 253, 164. https://doi.org/10.1126/science.1853201
  27. Luthy, R.; Bowie, J. U.; Eisenberg, D. Nature 1992, 356, 83. https://doi.org/10.1038/356083a0
  28. Wiederstein & Sippl Nucleic Acid Res. 2007, 35, W407. https://doi.org/10.1093/nar/gkm290
  29. Sippl, M. J. Proteins 1993, 17, 355. https://doi.org/10.1002/prot.340170404
  30. Sali, A.; Kurian, J. Trends Biochem. Sci. 1999, 22, M20.
  31. SYBYL Molecular Modeling System, version 6.9, Tripos Inc., St. Louis, MO, 63144.
  32. Gasteiger, J.; Marsili, M. Tetrahedron 1980, 363, 3219.
  33. Stitch, I.; Car, R.; Parrinello, M.; Baroni, S. Phys. Rev. B 1989, 39,4997. https://doi.org/10.1103/PhysRevB.39.4997
  34. Leach, A. Molecular Modelling, Principles and Applications;Longman: Harlow, Essex, England, 1996.
  35. Forcefield-Based Simulations; Accelerys, Corp.: San Diego, CA.Chapter 4, Minimization.
  36. Jensen, F. Introduction to Computational Chemistry; John Wiley:Chichester, England, 1999; p 322.
  37. Rarey, M.; Kramer, B.; Lengauer, T.; Kleb, G. A. J. Mol. Biol. 1996, 261, 470. https://doi.org/10.1006/jmbi.1996.0477
  38. Balazs, J.; Arpad, M. J. Mol. Grap. And Model 2007, 25, 711. https://doi.org/10.1016/j.jmgm.2006.05.010
  39. Cramer, R. D., III.; Patterson, D. E.; Bunce, J. D. J. Am. ChemSoc. 1988, 110, 5959. https://doi.org/10.1021/ja00226a005
  40. Cramer, R. D., III.; Bunce, J. D.; Patterson, D. E. Quant. Struct. Act. Relat. 1988, 7, 18. https://doi.org/10.1002/qsar.19880070105
  41. Klebe, G.; Abraham, U.; Mietzner, T. J. Med. Chem 1994, 37, 4130. https://doi.org/10.1021/jm00050a010
  42. Altschul, S. F.; Gish, W.; Miller, W.; Myers, E. W.; Lipman, D. J. J. Mol. Biol. 1990, 215, 403. https://doi.org/10.1016/S0022-2836(05)80360-2

Cited by

  1. Design of pyrimidine-based scaffolds as potential anticancer agents for human DHFR: three-dimensional quantitative structure-activity relationship by docking derived grid-independent descriptors vol.16, pp.11, 2011, https://doi.org/10.1007/s13738-019-01706-2
  2. Design, synthesis and molecular modeling of new quinazolin-4(3H)-one based VEGFR-2 kinase inhibitors for potential anticancer evaluation vol.109, pp.None, 2011, https://doi.org/10.1016/j.bioorg.2021.104695