References
- Cook, S. J.; Wakelam, M. Curr. Opin. Pharmacol. 2005, 5, 341. https://doi.org/10.1016/j.coph.2005.05.002
- Fan, Q. L.; Zou, W. Y.; Song, L. H.; Wei, W. Cancer Chemother. Pharmacol. 2005, 55, 189. https://doi.org/10.1007/s00280-004-0867-1
- Inagawa, H.; Nishizawa, T.; Honda, T.; Nakamoto, T.; Takagi, K.; Soma, G. Anticancer Res. 1998, 18, 3957.
- Le, T. N.; Gang, S. G.; Cho, W. J. Tetrahedron Lett. 2004, 45, 2763. https://doi.org/10.1016/j.tetlet.2004.02.031
- Nakanishi, T.; Masuda, A.; Suwa, M.; Akiyama, Y.; Hoshino-Abe, N.; Suzuki, M. Bioorg. Med. Chem. Lett. 2000, 10, 2321. https://doi.org/10.1016/S0960-894X(00)00467-4
- Vogt, A.; Tamewitz, A.; Skoko, J.; Sikorski, R. P.; Giuliano, K. A.; Lazo, J. S. J. Biol. Chem. 2005, 280, 19078. https://doi.org/10.1074/jbc.M501467200
- Cho, W. J.; Park, M. J.; Chung, B. H.; Lee, C. O. Bioorg. Med. Chem. Lett. 1998, 8, 41. https://doi.org/10.1016/S0960-894X(97)10190-1
- Cho, W. J.; Park, M. J.; Imanishi, T.; Chung, B. H. Chem. Pharm. Bull. 1999, 47, 900. https://doi.org/10.1248/cpb.47.900
- Cho, W. J.; Min, S. Y.; Le, T. N.; Kim, T. S. Bioorg. Med. Chem. Lett. 2003, 13, 4451. https://doi.org/10.1016/j.bmcl.2003.09.001
- Lee, S. H.; Van, H. T. M.; Yang, S. H.; Lee, K. T.; Kwon, Y.; Cho, W. J. Bioorg. Med. Chem. Lett. 2009, 19, 2444. https://doi.org/10.1016/j.bmcl.2009.03.058
- Van, H. T. M.; Le, Q. M.; Lee, K. Y.; Lee, E. S.; Kwon, Y.; Kim, T. S.; Le, T. N.; Lee, S. H.; Cho, W. J. Bioorg. Med. Chem. Lett. 2007, 17, 5763. https://doi.org/10.1016/j.bmcl.2007.08.062
- Cho, W. J.; Le, Q. M.; Van, H. T. M.; Lee, K. Y.; Kang, B. Y.; Lee, E. S.; Lee, S. K.; Kwon, Y. Bioorg. Med. Chem. Lett. 2007, 17, 3531. https://doi.org/10.1016/j.bmcl.2007.04.064
- Ioanoviciu, A.; Antony, S.; Pommier, Y.; Staker, B. L.; Stewart, L.; Cushman, M. J. Med. Chem. 2005, 48, 4803. https://doi.org/10.1021/jm050076b
- Staker, B. L.; Feese, M. D.; Cushman, M.; Pommier, Y.; Zembower, D.; Stewart, L.; Burgin, A. B. J. Med. Chem. 2005, 48, 2336. https://doi.org/10.1021/jm049146p
- Xiao, X.; Antony, S.; Pommier, Y.; Cushman, M. J. Med. Chem. 2005, 48, 3231. https://doi.org/10.1021/jm050017y
- Cho, W. J.; Kim, E. K.; Park, I. Y.; Jeong, E. Y.; Kim, T. S.; Le, T. N.; Kim, D. D.; Leed, E. S. Bioorg. Med. Chem. 2002, 10, 2953. https://doi.org/10.1016/S0968-0896(02)00137-2
- Kim, K. E.; Cho, W. J.; Chang, S. J.; Yong, C. S.; Lee, C. H.; Kim, D. D. Int. J. Pharm. 2001, 217, 101. https://doi.org/10.1016/S0378-5173(01)00593-2
- Kim, K. E.; Cho, W. J.; Kim, T. S.; Kang, B. H.; Chang, S. J.; Lee, C. H.; Kim, D. D. Drug. Dev. Ind. Pharm. 2002, 28, 889. https://doi.org/10.1081/DDC-120005634
- Cramer III, R. D.; Patterson, D. E.; Bunce, J. D. J. Am. Chem. Soc. 1988, 110, 5959. https://doi.org/10.1021/ja00226a005
- Marshall, G. R.; Cramer, R. D. Trends Pharmacol. Sci. 1988, 9, 285. https://doi.org/10.1016/0165-6147(88)90012-0
- Cho, S. J.; Tropsha, A. J. Med. Chem. 1995, 38, 1060. https://doi.org/10.1021/jm00007a003
- Klebe, G. Comparative Molecular Similarity Indices Analysis- CoMSIA. In 3D QSAR in Drug Design; Kluwer/ESCOM: Dodrecht, 1988.
- Kubinyi, H.; Hamprecht, F. A.; Mietzner, T. J. Med. Chem. 1998, 41, 2553. https://doi.org/10.1021/jm970732a
- Perez, C.; Pastor, M.; Ortiz, A.; Gago, F. J. Med. Chem. 1988, 41, 836.
- Golbraikh, A.; Bonchev, D.; Tropsha, A. J. Chem. Inf. Comput. Sci. 2001, 41, 147. https://doi.org/10.1021/ci000082a
- Allen, F. H.; Bellard, S.; Brice, M. D.; Cartwright, B. A.; Doubleday, A.; Higgs, H.; Hummelink, T.; Hummelink-Peters, B. G.; Kennard, O.; Motherwell, S. W. D.; Rodgers, J. R.; Watson, D. G. Acta Crystallogr., Sect B: Struct., Crystallogr. Cryst. Chem. 1979, B 35, 2331.
- Ewing, T. J.; Makino, S.; Skillman, A. G.; Kuntz, I. D. J. Comput. Aided Mol. Des. 2001, 15, 411. https://doi.org/10.1023/A:1011115820450
- Morris, G. M.; Goodsell, D. S.; Huey, R.; Olson, A. J. J. Comput. Aided Mol. Des. 1996, 4, 293.
- Osterberg, F.; Morris, G. M.; Sanner, M. F.; Olson, A. J.; Goodsell, D. S. Proteins 2002, 46, 34. https://doi.org/10.1002/prot.10028
- Jones, G.; Willett, P.; Glen, R. C. J. Mol. Biol. 1995, 245, 43. https://doi.org/10.1016/S0022-2836(95)80037-9
- Verdonk, M. L.; Cole, J. C.; Hartshorn, M. J.; Murray, C. W.; Taylor, R. D. Proteins 2003, 52, 609. https://doi.org/10.1002/prot.10465
- Holloway, M. K.; Wai, J. M.; Halgren, T. A.; Fitzgerald, P. M. D.; Vacca, J. P.; Dorsey, B. D.; Levin, R. B.; Thompson, W. J.; Chen, L. J.; deSolms, S. J.; Gaffin, N.; Ghosh, A. K.; Giuliani, E. A.; Graham, S. L.; Guare, J. P.; Hungate, R. W.; Lyle, T. A.; Sanders, W. M.; Tucker, T. J.; Wiggins, M.; Wiscount, C. M.; Woltersdorf, O. W.; Young, S. D.; Darke, P. L.; Zugay, J. A. J. Med. Chem. 1995, 38, 305. https://doi.org/10.1021/jm00002a012
- Judson, R. Genetic Algorithms and Their Use in Chemistry. In: Reviews in Computational Chemistry; VCH: 1997.
- Kramer, B.; Rarey, M.; Lengauer, T. Proteins 1999, 37, 228. https://doi.org/10.1002/(SICI)1097-0134(19991101)37:2<228::AID-PROT8>3.0.CO;2-8
- Claussen, H.; Buning, C.; Rarey, M.; Lengauer, T. J. Mol. Biol. 2001, 27, 377.
- Cho, S. J.; Serrano, M. G.; Bier, J.; Tropsha, A. J. Med. Chem. 1996, 39, 5064. https://doi.org/10.1021/jm950771r
- Pilger, C.; Bartolucci, C.; Lamba, D.; Tropsha, A.; Fels, G. J. Mol. Graph. Model. 2001, 19, 288. https://doi.org/10.1016/S1093-3263(00)00056-5
- Shen, M.; Beguin, C.; Golbraikh, A.; Stables, J. P.; Kohn, H.; Tropsha, A. J. Med. Chem. 2004, 47, 2356. https://doi.org/10.1021/jm030584q
- Oloff, S.; Mailman, R. B.; Tropsha, A. J. Med. Chem. 2005, 48, 7322. https://doi.org/10.1021/jm049116m
- Shen, M.; LeTiran, A.; Xiao, Y.; Golbraikh, A.; Kohn, H.; Tropsha, A. J. Med. Chem. 2002, 45, 2811. https://doi.org/10.1021/jm010488u
- Hoffman, B.; Cho, S. J.; Zheng, W.; Wyrick, S.; Nichols, D. E.; Mailman, R. B.; Tropsha, A. J. Med. Chem. 1999, 42, 3217. https://doi.org/10.1021/jm980415j
- Zheng, W.; Tropsha, A. J. Chem. Inf. Comput. Sci. 2000, 40, 185. https://doi.org/10.1021/ci980033m
- Cho, S. J.; Zheng, W.; Tropsha, A. J. Chem. Inf. Comput. Sci. 1998, 38, 259. https://doi.org/10.1021/ci9700945
- Cho, S. J.; Zheng, W.; Tropsha, A. Pac. Symp. Biocomput. 1998, 305.
- Zheng, W.; Cho, S. J.; Tropsha, A. J. Chem. Inf. Comput. Sci. 1998, 38, 251. https://doi.org/10.1021/ci970095x
- Rubinstein, L. V.; Shoemaker, R. H.; Paull, K. D.; Simon, R. M.; Tosini, S.; Skehan, P.; Scudiero, D. A.; Monks, A.; Boyd, M. R. J. Natl. Cancer Inst. 1990, 82, 1113. https://doi.org/10.1093/jnci/82.13.1113
- Kier, L. B.; Hall, L. H. Molecular Connectivity in Chemistry and Drug Research; Academic Press: New York, 1986.
- Kier, L. B. H. Molecular Connectivity in Chemistry and Drug Research; Academic Press: New York, 1976.
- Randic, M. J. Am.Chem. Soc. 1975, 97, 6609. https://doi.org/10.1021/ja00856a001
- Kier, L. B. Quant. Struct.-Act. Relat. 1985, 4, 109. https://doi.org/10.1002/qsar.19850040303
- Kier, L. B. Quant. Struct-Act. Relat. 1987, 6, 8. https://doi.org/10.1002/qsar.19870060103
- Hall, L. H.; Kier, L. B. Quant. Struct.-Act. Relat. 1990, 9, 115. https://doi.org/10.1002/qsar.19900090207
- Hall, L. H.; Mohney, B. K.; Kier, L. B. J. Chem. Inf. Comput. Sci. 1991, 31, 76. https://doi.org/10.1021/ci00001a012
- Hall, L. H.; Mohney, B. K.; Kier, L. B. Quant. Struct.-Act. Relat. 1991, 10, 43. https://doi.org/10.1002/qsar.19910100108
- Kellogg, G. E.; Kier, L. B.; Gaillard, P.; Hall, L. H. J. Comput. Aided Mol. Des. 1996, 10, 513. https://doi.org/10.1007/BF00134175
- Kier, L. B.; Hall, L. H. Molecular Structure Description: The Electrotopological State; Academic Press: 1999.
- Kier, L. B.; Hall, L. H. Quant. Struct.-Act. Relat. 1991, 10, 134. https://doi.org/10.1002/qsar.19910100208
- Petitjean, M. J. Chem. Inf. Comput. Sci. 1992, 32, 331. https://doi.org/10.1021/ci00008a012
- Wiener, H. J. J. Am. Chem. Soc. 1947, 69, 17. https://doi.org/10.1021/ja01193a005
- Platt, J. R. J. Chem. Phys. 1947, 15, 419. https://doi.org/10.1063/1.1746554
- Shannon, C.; Weaver, W. In Mathematical Theory of Communication; University of Illinois: Urbana, 1949.
- Bonchev, D.; Mekenyan, O.; Trinajstic, N. J. Comput. Chem. 1981, 2, 127. https://doi.org/10.1002/jcc.540020202
- Basak, S. C.; Mills, D. SAR QSAR Environ. Res. 2001, 12, 481. https://doi.org/10.1080/10629360108039830
- Benigni, R.; Giuliani, A.; Franke, R.; Gruska, A. Chem. Rev. 2000, 100, 3697. https://doi.org/10.1021/cr9901079
- Cronin, M. T.; Dearden, J. C.; Duffy, J. C.; Edwards, R.; Manga, N.; Worth, A. P.; Worgan, A. D. SAR QSAR Environ. Res. 2002, 13, 167.
- Fan, Y.; Shi, L. M.; Kohn, K. W.; Pommier, Y.; Weinstein, J. N. J. Med. Chem. 2001, 44, 3254. https://doi.org/10.1021/jm0005151
- Girones, X.; Gallegos, A.; Carbo-Dorca, R. J. Chem. Inf. Comput. Sci. 2000, 40, 1400. https://doi.org/10.1021/ci0004558
- Moss, G. P.; Dearden, J. C.; Patel, H.; Cronin, M. T. Toxicol. In Vitro 2002, 16, 299. https://doi.org/10.1016/S0887-2333(02)00003-6
- Randic, M.; Basak, S. C. J. Chem. Inf. Comput. Sci. 2000, 40, 899. https://doi.org/10.1021/ci990115q
- Suzuki, T.; Ide, K.; Ishida, M.; Shapiro, S. J. Chem. Inf. Comput. Sci. 2001, 41, 718. https://doi.org/10.1021/ci000333f
- Trohalaki, S.; Gifford, E.; Pachter, R. Comput. Chem. 2000, 24, 421. https://doi.org/10.1016/S0097-8485(99)00093-5
- Wang, X.; Yin, C.; Wang, L. Chemosphere 2002, 46, 1045. https://doi.org/10.1016/S0045-6535(01)00148-5
- Golbraikh, A.; Tropsha, A. J. Mol. Graph. Model. 2002, 20, 269. https://doi.org/10.1016/S1093-3263(01)00123-1
- Golbraikh, A.; Shen, M.; Xiao, Z.; Xiao, Y. D.; Lee, K. H.; Tropsha, A. J. Comput. Aided Mol. Des. 2003, 17, 241. https://doi.org/10.1023/A:1025386326946
- Golbraikh, A.; Tropsha, A. J. Comput. Aided Mol. Des. 2002, 16, 357. https://doi.org/10.1023/A:1020869118689
- Pintore, M.; Piclin, N.; Benfenati, E.; Gini, G.; Chretien, J. R. Qsar & Comb. Sci. 2003, 22, 210. https://doi.org/10.1002/qsar.200390014
- Zhang, S.; Golbraikh, A.; Tropsha, A. J. Med. Chem. 2006, 49, 2713. https://doi.org/10.1021/jm050260x
- Golbraikh, A.; Bonchev, D.; Tropsha, A. J. Chem. Inf. Comput. Sci. 2002, 42, 769. https://doi.org/10.1021/ci0103469
- Wold, S. a. E. L. Statistical Validation of QSAR Results. In Chemometrics Methods in Molecular Design; VCH: Weinheim, Germany, 1995.
- Tropsha, A.; Golbraikh, A. Curr. Pharm. Des. 2007, 13, 3494. https://doi.org/10.2174/138161207782794257
Cited by
- Modeling the binding affinity of structurally diverse industrial chemicals to carbon using the artificial intelligence approaches vol.22, pp.22, 2015, https://doi.org/10.1007/s11356-015-4965-x
- Estimating sensory irritation potency of volatile organic chemicals using QSARs based on decision tree methods for regulatory purpose vol.24, pp.4, 2015, https://doi.org/10.1007/s10646-015-1431-y
- Predicting Toxicities of Diverse Chemical Pesticides in Multiple Avian Species Using Tree-Based QSAR Approaches for Regulatory Purposes vol.55, pp.7, 2015, https://doi.org/10.1021/acs.jcim.5b00139
- -Oxides vol.80, pp.11, 2015, https://doi.org/10.1021/acs.joc.5b00475
- Modeling the reactivities of hydroxyl radical and ozone towards atmospheric organic chemicals using quantitative structure-reactivity relationship approaches vol.23, pp.14, 2016, https://doi.org/10.1007/s11356-016-6527-2
- Room-temperature and temperature-dependent QSRR modelling for predicting the nitrate radical reaction rate constants of organic chemicals using ensemble learning methods vol.27, pp.7, 2016, https://doi.org/10.1080/1062936X.2016.1199592
- Modeling the toxicity of chemical pesticides in multiple test species using local and global QSTR approaches vol.5, pp.1, 2016, https://doi.org/10.1039/C5TX00321K
- In silico prediction of the developmental toxicity of diverse organic chemicals in rodents for regulatory purposes vol.5, pp.3, 2016, https://doi.org/10.1039/C5TX00493D
- QSAR modeling for predicting reproductive toxicity of chemicals in rats for regulatory purposes vol.5, pp.4, 2016, https://doi.org/10.1039/C6TX00083E
- Three-Tier Strategy for Screening High-Energy Molecules Using Structure–Property Relationship Modeling Approaches vol.55, pp.3, 2016, https://doi.org/10.1021/acs.iecr.5b03575
- Glossary of terms used in computational drug design, part II (IUPAC Recommendations 2015) vol.88, pp.3, 2016, https://doi.org/10.1515/pac-2012-1204
- Modeling the pH and temperature dependence of aqueousphase hydroxyl radical reaction rate constants of organic micropollutants using QSPR approach vol.24, pp.32, 2017, https://doi.org/10.1007/s11356-017-0161-5
- Predicting aquatic toxicities of benzene derivatives in multiple test species using local, global and interspecies QSTR modeling approaches vol.5, pp.87, 2015, https://doi.org/10.1039/c5ra12825k
- Predicting the hazardous dose of industrial chemicals in warm-blooded species using machine learning-based modelling approaches. vol.26, pp.6, 2011, https://doi.org/10.1080/1062936x.2015.1051584
- Predicting binding affinities of diverse pharmaceutical chemicals to human serum plasma proteins using QSPR modelling approaches vol.27, pp.1, 2011, https://doi.org/10.1080/1062936x.2015.1133700