DOI QR코드

DOI QR Code

One-Pot Synthesis of CdSe Quantum Dots Using Selenium Dioxide as a Selenium Source in Aqueous Solution

  • Wang, Yilin (College of Chemistry and Chemical Engineering, Guangxi University) ;
  • Yang, Hong (College of Chemistry and Chemical Engineering, Guangxi University) ;
  • Xia, Zhenyi (College of Chemistry and Chemical Engineering, Guangxi University) ;
  • Tong, Zhangfa (College of Chemistry and Chemical Engineering, Guangxi University) ;
  • Zhou, Liya (College of Chemistry and Chemical Engineering, Guangxi University)
  • Received : 2010.10.27
  • Accepted : 2011.05.26
  • Published : 2011.07.20

Abstract

A novel technology has been developed for the synthesis of thioglycolic acid (TGA)-capped CdSe quantum dots (QDs) in aqueous medium. The reaction was carried out in air atmosphere with one-pot by using $SeO_2$ to replace Se or $Na_2Se$. The technological parameters including refluxing time, pH values and molar ratios of selenium to cadmium had significant influence on the luminescence properties of CdSe QDs. Furthermore, the obtained QDs were characterized by fluorescent spectroscopy, X-ray powder diffraction (XRD) and transmission electron microscopy (TEM), respectively. The results demonstrated that the CdSe QDs were of zinc-blended crystal structure in a sphere-like shape.

Keywords

References

  1. Liao, P.; Yan, Z. Y.; Xu, Z. J.; Sun, X. Spectrochim. Acta A 2009, 72, 1066. https://doi.org/10.1016/j.saa.2008.12.039
  2. Xue, X. H.; Pan, J.; Xie, H. M.; Wang, J. H.; Zhang, S. Talanta. 2009, 77, 1808. https://doi.org/10.1016/j.talanta.2008.10.025
  3. Chong, L. W.; Chien, H. T.; Lee, Y. L. J. Power Sources 2010, 19, 5109.
  4. Han, H. Y.; Sheng, Z. H.; Liang, J. G. Mater. Lett. 2006, 60, 3782. https://doi.org/10.1016/j.matlet.2006.03.113
  5. Wang, L.; Sun, X. D.; Liu, W. J.; Liu, B. Y. Mater. Chem. Phys. 2010, 120, 54. https://doi.org/10.1016/j.matchemphys.2009.10.020
  6. Maseko, N. N.; Revaprasadu, N.; Pullabhotla, V. S. R.; Karthik, R.; Brien, P. O. Mater. Lett. 2010, 64, 1037. https://doi.org/10.1016/j.matlet.2010.02.002
  7. Xia, Y. S.; Zhu, C. Q. Mater. Lett. 2008, 62, 2103. https://doi.org/10.1016/j.matlet.2007.11.027
  8. Gao, Y. H.; Zhang, Q.; Gao, Q.; Tian, Y. P.; Zhou, W.; Zheng, L. X. et al. Mater. Chem. Phys. 2009, 115, 724. https://doi.org/10.1016/j.matchemphys.2009.02.020
  9. Chen, X. F.; Hutchison, J. L.; Dobson, P. J.; Wakefield, G. J Colloid Interf. Sci. 2008, 319, 140. https://doi.org/10.1016/j.jcis.2007.11.043
  10. Yang, Q.; Tang, K.; Wang, F.; Wang, C.; Qian, Y. Mater. Lett. 2003, 57, 3508. https://doi.org/10.1016/S0167-577X(03)00117-4
  11. Murray, C. B.; Norris, D. J.; Bawendi, M. G. J. Am. Chem. Soc. 1993, 115, 8706. https://doi.org/10.1021/ja00072a025
  12. Rogach, A. L.; Kornowski, A.; Gao, M. Y.; Eychmuller, A.; Weller, H. J. Phys. Chem. B 1999, 103, 3065. https://doi.org/10.1021/jp984833b
  13. Xie, Y.; Xu, J. J.; Yu, J. S.; Chen, H. Y.; Chinese, J. Inorg. Chem. 2004, 20, 663.
  14. Bowers, M. J.; McBride, J. R.; Rosenthal, S. J. J. Am. Chem. Soc. 2005, 127, 15378. https://doi.org/10.1021/ja055470d
  15. Hung, M. L.; Stanbury, D. M. Inorg. Chem. 2005, 44, 9952. https://doi.org/10.1021/ic051241g
  16. Chen, S. T.; Zhang, X. L.; Zhao, Y. B.; Yan, J. L.; Tan, W. H. Mater. Lett. 2009, 63, 712. https://doi.org/10.1016/j.matlet.2008.12.034
  17. Deng, D. W.; Yu, J. S.; Pan, Y. J. Colloid Interf. Sci. 2006, 299, 225. https://doi.org/10.1016/j.jcis.2006.01.066
  18. Behboudnia, M.; Azizianekalandaragh, Y. Mat. Sci. Eng. B 2007, 138, 65. https://doi.org/10.1016/j.mseb.2007.01.018
  19. Chang, W. G.; Shen, Y. H.; Xie, A. J.; Zhang, H.; Wang, J.; Lu, W. S. J. Colloid Interf. Sci. 2009, 335, 257. https://doi.org/10.1016/j.jcis.2009.03.035
  20. El-sadek, M. S. A.; Nooralden, A. Y.; Babu, S. M.; Palanisamy, P. K. Opt. Commun. 2011, 284, 2900. https://doi.org/10.1016/j.optcom.2011.01.071

Cited by

  1. Synthesis of CdS, ZnS, and CdS/ZnS Core/Shell Nanocrystals Using Dodecanethiol vol.33, pp.2, 2012, https://doi.org/10.5012/bkcs.2012.33.2.393
  2. ions vol.5, pp.113, 2015, https://doi.org/10.1039/C5RA14425F
  3. Synthesis and characterisation of CdSe nanocrystals using NaHSeO3 as selenium source vol.7, pp.6, 2012, https://doi.org/10.1049/mnl.2012.0284
  4. Synthesis of high-quality CdSe quantum dots in aqueous solution vol.7, pp.9, 2011, https://doi.org/10.1049/mnl.2012.0439
  5. Simple and surfactant free synthesis and characterization of CdS/ZnS core-shell nanoparticles and their application in the removal of heavy metals from aqueous solution vol.4, pp.21, 2011, https://doi.org/10.1039/c3ra46267f
  6. Synthesis of CdS Nanocrystals with Different Shapes via a Colloidal Method vol.35, pp.2, 2011, https://doi.org/10.5012/bkcs.2014.35.2.397
  7. Aqueous Synthesis of Luminescent CdSe Quantum Dots from Selenium Tetrachloride vol.35, pp.6, 2011, https://doi.org/10.5012/bkcs.2014.35.6.1601
  8. Impact of reaction variables and PEI/L-cysteine ratio on the optical properties and cytocompatibility of cationic Ag2S quantum dots as NIR bio-imaging probes vol.6, pp.81, 2011, https://doi.org/10.1039/c6ra13804g
  9. The Next Stage in Colloidal Synthesis of Aqueous CdSe Quantum Dots: High Throughput and Intense Emissive Properties vol.5, pp.7, 2019, https://doi.org/10.1002/cnma.201900247
  10. A 10 minute approach for the phase specific synthesis of Se nanoparticles with tunable morphology: their anticancer efficacy and the role of an ionic liquid vol.44, pp.11, 2020, https://doi.org/10.1039/c9nj06088j