DOI QR코드

DOI QR Code

Carbon-Based Solid Acid as an Efficient and Reusable Catalyst for the Synthesis of 1,8-Dioxodecahydroacridines Under Solvent-Free Conditions

  • Received : 2011.04.07
  • Accepted : 2011.05.18
  • Published : 2011.07.20

Abstract

Carbon-based solid acid catalyst was found to be highly efficient, eco-friendly and recyclable heterogeneous catalyst for the multicomponent reaction of dimedone, aromatic aldehydes, and a nitrogen source (ammonium acetate or aromatic amines) under solvent-free conditions, giving rise to 1,8-dioxodecahydroacridines in high yields. The present methodology offers several advantages, such as a simple procedure with an easy work-up, short reaction times, high yields, and the absence of any volatile and hazardous organic solvents.

Keywords

References

  1. Zhu, J., Bienayme, H., Eds.; Wiley-VCH: Weinheim, Germany, 2005.
  2. Bagley, M. C.; Lubinu, M. C. Top. Heterocycl. Chem. 2006, 31.
  3. Simon, C.; Constantieux, T.; Rodriguez, J. Eur. J. Org. Chem. 2004, 4957.
  4. Dömling, A.; Ugi, I. Andew. Chem., Int. Ed. 2000, 39, 3168. https://doi.org/10.1002/1521-3773(20000915)39:18<3168::AID-ANIE3168>3.0.CO;2-U
  5. Gordeev, M. F.; Patel, D. V.; Gordon, E. M. J. Org. Chem. 1996, 61, 924. https://doi.org/10.1021/jo951706s
  6. Sausins, A.; Duburs, G. Heterocycles 1988, 27, 269. https://doi.org/10.3987/REV-87-370
  7. Coburn, R. A.; Wierzba, M.; Suto, M. J.; Solo, A. J.; Triggle, A. M.; Triggle, D. J. J. Med. Chem. 1988, 31, 2103. https://doi.org/10.1021/jm00119a009
  8. Godfraind, T.; Miller, R.; Wibo, M. Pharmacol. Rev. 1986, 38, 321.
  9. Vo, D.; Matowe, W. C.; Ramesh, M.; Iqbal, N.; Wolowyk, M. W.; Howlett, S. E.; Knaus, E. E. J. Med. Chem. 1995, 38, 2851. https://doi.org/10.1021/jm00015a007
  10. Jin, T. S.; Zhang, J. S.; Guo, T. T.; Wang, A. Q.; Li, T. S. Synthesis 2004, 12, 2001.
  11. Chandrasekhar, S.; Rao, Y. S.; Sreelakshmi, L.; Mahipal, B.; Reddy, C. R. Synthesis 2008, 11, 1737.
  12. Venkatesan, K.; Pujari, S. S.; Srinivasan, K. V. Synth. Commun. 2009, 39, 228.
  13. Das, B.; Thirupathi, P.; Mahender, I.; Saidi Reddy, V.; Rao, Y. K. J. Mol. Catal. A: Chem. 2006, 247, 233. https://doi.org/10.1016/j.molcata.2005.11.048
  14. Balalaie, S.; Chadegani, F.; Darviche, F.; Bijanzadeh, H. R. Chin. J. Chem. 2009, 27, 1953. https://doi.org/10.1002/cjoc.200990328
  15. Shen, W.; Wang, L. M.; Tian, H.; Tang, J.; Yu, J. J. J. Fluorine Chem. 2009, 130, 522. https://doi.org/10.1016/j.jfluchem.2009.02.014
  16. Mora, A.; Suarez, M.; Ochoa, E.; Morales, A.; del Bosque, J. R. J. Heterocycl. Chem. 1995, 32, 235. https://doi.org/10.1002/jhet.5570320139
  17. Tu, S.; Miao, C.; Gao, Y.; Fang, F.; Zhuang, Q.; Feng, Y.; Shia, D. Synlett 2004, 2, 255.
  18. Okuhara, T. Chem. Rev. 2002, 102, 3641. https://doi.org/10.1021/cr0103569
  19. Hara, M.; Yoshida, T.; Takagaki, A.; Takata, T.; Kondo, J. N.; Hayashi, S.; Domen, K. Angew. Chem., Int. Ed. 2004, 43, 2955. https://doi.org/10.1002/anie.200453947
  20. Okamura, M.; Takagaki, A.; Toda, M.; Kondo, J. N.; Domen, K.; Tatsumi, T.; Hara, M.; Hayashi, S. Chem. Mater. 2006, 18, 3039. https://doi.org/10.1021/cm0605623
  21. Zali, A.; Shokrolahi, A.; Keshavarz, M. H.; Zarei, M. A. Acta Chim. Slov. 2008, 55, 257.
  22. Zhou, L.; Liu, K.; Hua, W. M.; Yue, Y. H.; Gao, Z. Chin. J. Chem. 2009, 30, 196.
  23. Rahimizadeh, M.; Davoodnia, A.; Heravi, M. M.; Bakavoli, M. Phosphorus, Sulfur Silicon Relat. Elem. 2002, 177, 2923. https://doi.org/10.1080/10426500214890
  24. Bakavoli, M.; Davoodnia, A.; Rahimizadeh, M.; Heravi, M. M. Mendeleev Commun. 2006, 1, 29.
  25. Davoodnia, A.; Bakavoli, M.; Pooryaghoobi, N.; Roshani, M. Heterocycl. Commun. 2007, 13, 323. https://doi.org/10.1515/HC.2007.13.5.323
  26. Davoodnia, A.; Roshani, M.; Saleh-Nadim, E.; Bakavoli, M.; Tavakoli-Hoseini, N. Chin. Chem. Lett. 2007, 18, 1327. https://doi.org/10.1016/j.cclet.2007.09.004
  27. Davoodnia, A.; Bakavoli, M.; Barakouhi, Gh.; Tavakoli-Hoseini, N. Chin. Chem. Lett. 2007, 18, 1483. https://doi.org/10.1016/j.cclet.2007.10.013
  28. Davoodnia, A.; Roshani, M.; Malaeke, S. H.; Bakavoli, M. Chin. Chem. Lett. 2008, 19, 525. https://doi.org/10.1016/j.cclet.2008.01.037
  29. Davoodnia, A.; Heravi, M. M.; Rezaei-Daghigh, L.; Tavakoli- Hoseini, N. Monatsh. Chem. 2009, 140, 1499. https://doi.org/10.1007/s00706-009-0193-8
  30. Davoodnia, A.; Bakavoli, M.; Moloudi, R.; Khashi, M.; Tavakoli- Hoseini, N. Monatsh. Chem. 2010, 141, 867. https://doi.org/10.1007/s00706-010-0329-x
  31. Davoodnia, A.; Heravi, M. M.; Safavi-Rad, Z.; Tavakoli-Hoseini, N. Synth. Commun. 2010, 40, 2588. https://doi.org/10.1080/00397910903289271
  32. Tavakoli-Hoseini, N.; Davoodnia, A. Asian J. Chem. 2010, 22, 7197.
  33. Davoodnia, A.; Allameh, S.; Fakhari, A. R.; Tavakoli-Hoseini, N. Chin. Chem. Lett. 2010, 21, 550. https://doi.org/10.1016/j.cclet.2010.01.032
  34. Davoodnia, A.; Bakavoli, M.; Moloudi, R.; Khashi, M.; Tavakoli- Hoseini, N. Chin. Chem. Lett. 2010, 21, 1. https://doi.org/10.1016/j.cclet.2009.09.002
  35. Davoodnia, A. Asian J. Chem. 2010, 22, 1595.
  36. Niknam, K.; Panahi, F.; Saberi, D.; Mohagheghnejad, M. J. Heterocycl. Chem. 2010, 47, 292.

Cited by

  1. ChemInform Abstract: Carbon-Based Solid Acid as an Efficient and Reusable Catalyst for the Synthesis of 1,8-Dioxodecahydroacridines under Solvent-Free Conditions. vol.42, pp.47, 2011, https://doi.org/10.1002/chin.201147130
  2. Poly(4-Vinylpyridinium)Hydrogen Sulfate Catalyzed an Efficient and Ecofriendly Protocol for the One-Pot Multicomponent Synthesis of 1,8-Acridinediones in Aqueous Medium vol.2013, pp.2090-9071, 2013, https://doi.org/10.1155/2013/850254
  3. ] as a Reusable Heterogeneous Catalyst vol.34, pp.5, 2013, https://doi.org/10.5012/bkcs.2013.34.5.1508
  4. Nanomagnetically modified ferric hydrogen sulfate (NiFe2O4@SiO2-FHS): a reusable green catalyst for the synthesis of highly functionalized piperidine derivatives vol.12, pp.5, 2015, https://doi.org/10.1007/s13738-014-0546-z
  5. , via green combustion synthesis, as an efficient and reusable catalyst for the preparation of 1,8-dioxooctahydroxanthenes and 1,8-dioxodecahydroacridines vol.29, pp.12, 2015, https://doi.org/10.1002/aoc.3370
  6. Sulfonated carbon/nano-metal oxide composites: a novel and recyclable solid acid catalyst for organic synthesis in benign reaction media vol.39, pp.8, 2015, https://doi.org/10.1039/C5NJ00607D
  7. Saccharose as a new, natural, and highly efficient catalyst for the one-pot synthesis of 4,5-dihydropyrano[3,2-c]chromenes, 2-amino-3-cyano-4H-chromenes, 1,8-dioxodecahydroacridine, and 2-substituted benzimidazole derivatives vol.41, pp.10, 2015, https://doi.org/10.1007/s11164-014-1793-4
  8. Extraordinary catalytic activity of a Keplerate-type giant nanoporous isopolyoxomolybdate in the synthesis of 1,8-dioxo-octahydroxanthenes and 1,8-dioxodecahydroacridines vol.41, pp.10, 2015, https://doi.org/10.1007/s11164-014-1861-9
  9. p-Sulfonic acid calix[4]arene as an efficient and reusable catalyst for the synthesis of acridinediones and xanthenes vol.41, pp.12, 2015, https://doi.org/10.1007/s11164-015-2001-x
  10. Ionic liquid immobilized on Fe3O4 nanoparticles: a magnetically recyclable heterogeneous catalyst for one-pot three-component synthesis of 1,8-dioxodecahydroacridines vol.41, pp.12, 2015, https://doi.org/10.1007/s11164-015-2003-8
  11. Efficient, solvent-free synthesis of acridinediones catalyzed by CdO nanoparticles vol.41, pp.3, 2015, https://doi.org/10.1007/s11164-013-1284-z
  12. A fast and green method for synthesis of tetrahydrobenzo[a]xanthene-11-ones using Ce(SO4)2·4H2O as a novel, reusable, heterogeneous catalyst vol.41, pp.4, 2015, https://doi.org/10.1007/s11164-013-1356-0
  13. Atom-economy click synthesis of tetrahydrobenzo[b]pyrans using carbon-based solid acid as a novel, highly efficient and reusable heterogeneous catalyst vol.41, pp.7, 2015, https://doi.org/10.1007/s11164-014-1536-6
  14. Catalytic application of some perovskite nano-oxides for the one-pot synthesis of 1,8-dioxodecahydroacridines vol.119, pp.1, 2016, https://doi.org/10.1007/s11144-016-1033-6
  15. ]pyrans in Water vol.48, pp.4, 2016, https://doi.org/10.1080/00304948.2016.1194127
  16. ] Catalyzed Multicomponent Reaction pp.1563-5333, 2018, https://doi.org/10.1080/10406638.2016.1207687
  17. Green and efficient synthesis of acridine-1,8-diones and hexahydroquinolines via a KH2PO4 catalyzed Hantzsch-type reaction in aqueous ethanol vol.43, pp.5, 2017, https://doi.org/10.1007/s11164-016-2814-2
  18. Efficient synthesis of acridinediones in aqueous media vol.47, pp.10, 2017, https://doi.org/10.1080/00397911.2017.1304556
  19. One-Pot Synthesis of Polyhydroquinoline Derivatives through Organic-Solid-Acid-Catalyzed Hantzsch Condensation Reaction vol.9, pp.8, 2017, https://doi.org/10.1002/cctc.201601409
  20. –PPA Nanoparticle: A Green Nanocatalyst for the Synthesis of β-Acetamido Ketones pp.1563-5333, 2019, https://doi.org/10.1080/10406638.2017.1335218
  21. A Highly Efficient and Fast Method for the Synthesis of Biscoumarins Using Tetrabutylammonium Hexatungstate [TBA]2[W6O19] as Green and Reusable Heterogeneous Catalyst vol.32, pp.12, 2011, https://doi.org/10.5012/bkcs.2011.32.12.4286
  22. An Efficient Method for Knoevenagel Condensation Catalyzed by Tetrabutylammonium hexatungstate [TBA]2[W6O19] as Novel and Reusable Heterogeneous Catalyst vol.42, pp.7, 2012, https://doi.org/10.1080/15533174.2012.680140
  23. Polymer Support Immobilized Acidic Ionic Liquid: Preparation and Its Application as Catalyst in the Synthesis of Hantzsch 1,4-Dihydropyridines vol.33, pp.7, 2011, https://doi.org/10.5012/bkcs.2012.33.7.2140
  24. Preparation, Characterization and First Application of Aerosil Silica Supported Acidic Ionic Liquid as a Reusable Heterogeneous Catalyst for the Synthesis of 2,3-Dihydroquinazolin-4(1H)-ones vol.33, pp.8, 2011, https://doi.org/10.5012/bkcs.2012.33.8.2724
  25. Highly Efficient Low Melting Mixture Catalyzed Synthesis of 1,8‐Dioxo‐dodecahydroxanthene Derivatives vol.31, pp.6, 2011, https://doi.org/10.1002/cjoc.201300152
  26. Synthesis, characterization and first application of keggin-type heteropoly acids supported on silica coated NiFe2O4as novel magnetically catalysts for the synthesis of tetrahydr vol.4, pp.75, 2011, https://doi.org/10.1039/c4ra05133e
  27. Water mediated reactions: TiO2and ZnO nanoparticle catalyzed multi component domino reaction in the synthesis of tetrahydroacridinediones, acridindiones, xanthenones and xanthenes vol.5, pp.22, 2015, https://doi.org/10.1039/c4ra13045f
  28. One-Pot, Facile, Highly Efficient, and Green Synthesis of Acridinedione Derivatives Using Vitamin B1 vol.45, pp.24, 2015, https://doi.org/10.1080/00397911.2015.1109127
  29. A convenient method for the synthesis of 1,8-dioxodecahydroacridine derivatives using 1-methylimidazolium tricyanomethanide {[HMIM]C(CN)3} as a nanostructured molten salt catalyst vol.218, pp.None, 2011, https://doi.org/10.1016/j.molliq.2016.03.006
  30. Solvent-free synthesis of polyhydroquinoline and 1,8-dioxodecahydroacridine derivatives through the Hantzsch reaction catalyzed by a natural organic acid: A green method vol.47, pp.12, 2011, https://doi.org/10.1080/00397911.2017.1316406
  31. Gd0.7Sr0.3MnO3 perovskite as a novel and efficient catalyst for synthesis of dioxodecahydroacridine derivatives vol.47, pp.3, 2017, https://doi.org/10.1080/15533174.2016.1186058
  32. K2CO3/Al2O3: An efficient and recyclable catalyst under solvent free conditions for the reaction of electron-deficient nitro-olefins with 1,3-dicarbonyl com vol.4, pp.1, 2011, https://doi.org/10.1080/23312009.2018.1455346
  33. One-pot, Multicomponent Synthesis under Microwave Conditions of New Imidazole and Acridine Benzamido Acetic Acid Derivatives vol.42, pp.2, 2011, https://doi.org/10.3184/174751918x15181752711035
  34. An Efficient One-Pot Four-Component Synthesis of 9-Aryl-Hexahydroacridine-1,8-Dione Derivatives in the Presence of a Molecular Sieves Supported Iron Catalyst vol.149, pp.9, 2011, https://doi.org/10.1007/s10562-019-02845-0
  35. New Hydrogen-Bond-Enriched 1,3,5-Tris(2-hydroxyethyl) Isocyanurate Covalently Functionalized MCM-41: An Efficient and Recoverable Hybrid Catalyst for Convenient Synthesis of Acridinedione Derivatives vol.4, pp.24, 2019, https://doi.org/10.1021/acsomega.9b02755
  36. Organocatalyzed Domino Synthesis of New Thiazole‐Based Decahydroacridine‐1,8‐diones and Dihydropyrido[2,3‐d : 6,5‐d′]‐ dipyrimidines in Water as Antimicrobial vol.17, pp.2, 2011, https://doi.org/10.1002/cbdv.201900577
  37. Triflic Acid Functionalized Carbon@Silica Composite: Synthesis and Applications in Organic Synthesis; DFT Studies of Indeno[1,2‐b]indole vol.5, pp.7, 2020, https://doi.org/10.1002/slct.201904727
  38. Simple and Efficient Synthesis of Guanidine‐Based Magnetic Nanocatalyst for the One‐Pot, Four‐Component Synthesis of Polyhydroquinolines in Water vol.5, pp.28, 2020, https://doi.org/10.1002/slct.202001903
  39. Acridine‐1,8‐diones: Synthesis and Biological Applications vol.6, pp.9, 2011, https://doi.org/10.1002/slct.202004536
  40. Glutathione-Coated Magnetic Nanoparticles for One-Pot Synthesis of 1,4-Dihydropyridine Derivatives vol.41, pp.4, 2011, https://doi.org/10.1080/10406638.2019.1614639
  41. A Carbon‐Based Solid Acid Catalyst Prepared through a One‐Step Hydrothermal Carbonization: Efficient Catalysts for Liquid‐Phase Nitrification vol.6, pp.34, 2011, https://doi.org/10.1002/slct.202101728
  42. Preparation and characterization of GO/KCC‐1/Ni(II) as an efficient catalyst for the green synthesis of some 1,8‐dioxodecahydroacridine derivatives vol.35, pp.10, 2011, https://doi.org/10.1002/aoc.6358
  43. Glycerol-Mediated and Simple Synthesis of 1,8-Dioxo-Decahydroacridines Under Transition Metal-Free Conditions vol.41, pp.10, 2011, https://doi.org/10.1080/10406638.2019.1711139