DOI QR코드

DOI QR Code

Phase Transformation and Dielectric Properties of <001> 0.7Pb(Mg1/3Nb2/3)O3-0.3PbTiO3 Single Crystals

<001> 0.7Pb(Mg1/3Nb2/3)O3-0.3PbTiO3 단결정의 상변화 및 유전 특성

  • Lee, Eun-Gu (Department of Advanced Materials Engineering, Chosun University) ;
  • Lee, Jae-Gab (School of Advanced Materials Engineering, Kookmin University)
  • Received : 2011.05.11
  • Accepted : 2011.06.15
  • Published : 2011.07.27

Abstract

The structure and dielectric properties of poled <001>-oriented 0.7Pb($Mg_{1/3}Nb_{2/3})O_3-0.3PbTiO_3$ (PMN-0.3PT) crystals have been investigated for orientations both parallel and perpendicular to the [001] poling direction. An electric field induced monoclinic phase was observed for the initial poled sample. The phase remained stable after the field was removed. A quite different temperature dependence of dielectric constant has been observed between heating and cooling due to an irreversible phase transformation. The results of mesh scans and temperature dependence of the dielectric constant demonstrate that the initial monoclinic phase changes to a single domain tetragonal phase at 370K and to a paraelectric cubic phase at 405K upon heating. However, upon subsequent cooling from the unpoled state, the cubic phase changes to a poly domain tetragonal phase and to a rhombohedral phase. In the ferroelectric tetragonal phase with a single domain state, the dielectric constant measured perpendicular to the poling direction was dramatically higher than that of the parallel direction. A large dielectric constant implies easier polarization rotation away from the polar axis. This enhancement is believed to be related to dielectric softening close to the morphotropic phase boundary and at the phase transition temperature.

Keywords

References

  1. S. E. Park and T. R. Shrout, J. Appl. Phys., 82, 1804 (1997). https://doi.org/10.1063/1.365983
  2. S. E. Park and T. R. Shrout, IEEE Trans. Ultrason. Ferroelectrics Freq. Contr., 44, 1140 (1997). https://doi.org/10.1109/58.655639
  3. B. Noheda, J. A. Gonzalo, L. E. Cross, R. Guo, S. E. Park, D. E. Cox and G. Shirane, Phys. Rev. B Condens. Matter, 61, 8687 (2000). https://doi.org/10.1103/PhysRevB.61.8687
  4. B. Noheda, D. Cox, G. Shirane, J. Gao and Z. Ye, Phys. Rev. B Condens. Matter, 66, 054104 (2002). https://doi.org/10.1103/PhysRevB.66.054104
  5. Z. Feng, X. Zhao and H. Luo, J. Phys. Condens. Matter, 16, 6771 (2004).
  6. H. Fu and R. E. Cohen, Nature, 403, 281 (2000). https://doi.org/10.1038/35002022
  7. A. Garcia and D. Vanderbilt, Appl. Phys. Lett., 72, 2981 (1998). https://doi.org/10.1063/1.121514
  8. L. Bellaiche, A. Garcia and D. Vanderbilt, Phys. Rev. Lett., 84, 5427 (2000). https://doi.org/10.1103/PhysRevLett.84.5427
  9. D. Viehland and J. F. Li, J. Appl. Phys., 92, 7690 (2002). https://doi.org/10.1063/1.1524016
  10. Z. -G. Ye, B. Noheda, M. Dong, D. Cox and G. Shirane, Phys. Rev. B Condens. Matter, 64, 184114 (2001). https://doi.org/10.1103/PhysRevB.64.184114
  11. K.Ohwada, K. Hirota, P. W. Rehrig, Y. Fujii and G. Shirane, Phys. Rev. B Condens. Matter, 67, 094111 (2003). https://doi.org/10.1103/PhysRevB.67.094111
  12. Y. Lu, D. -Y. Jeong, Z. -Y. Cheng, Q. M. Zhang, H. -S. Luo, Z. -W. Yin and D. Viehland, Appl. Phys. Lett., 78, 3109 (2001). https://doi.org/10.1063/1.1372360
  13. Z. Feng, X. Zhao and H. Luo, Mater. Res. Bull., 41, 1133 (2006) https://doi.org/10.1016/j.materresbull.2005.11.007
  14. Z. Xu, X. Tan, P. Han and J. Shang, Appl. Phys. Lett., 76, 3732 (2000). https://doi.org/10.1063/1.126765
  15. M. Kuwabara, S. Takahashi, K. Goda, K. Oshima and K. Watande, Jpn. J. Appl. Phys., 31, 3241 (1992). https://doi.org/10.1143/JJAP.31.3241
  16. G. Shirane, G. Xu and P. M. Gehring, Ferroelectrics, 321, 7 (2005). https://doi.org/10.1080/00150190500259574
  17. M. Budimir, D. Damjanovic and N. Setter, J. Appl. Phys., 94, 6753 (2003). https://doi.org/10.1063/1.1625080