DOI QR코드

DOI QR Code

Mechanical Properties and Bio-Compatibility of Ti-Nb-Zr-HA Biomaterial Fabricated by Rapid Sintering Using HEMM Powders

고에너지 밀링분말과 급속소결을 이용한 Ti-Nb-Zr-HA 생체복합재의 기계적 성질 및 생체적합성

  • Park, Sang-Hoon (Division of Advanced Materials Engineering, Research Center of Industrial Technology, Chonbuk National University) ;
  • Woo, Kee-Do (Division of Advanced Materials Engineering, Research Center of Industrial Technology, Chonbuk National University) ;
  • Kim, Sang-Hyuk (Division of Advanced Materials Engineering, Research Center of Industrial Technology, Chonbuk National University) ;
  • Lee, Seung-Min (Division of Advanced Materials Engineering, Research Center of Industrial Technology, Chonbuk National University) ;
  • Kim, Ji-Young (Division of Advanced Materials Engineering, Research Center of Industrial Technology, Chonbuk National University) ;
  • Ko, Hye-Rim (Division of Advanced Materials Engineering, Research Center of Industrial Technology, Chonbuk National University) ;
  • Kim, Sang-Mi (Division of Advanced Materials Engineering, Research Center of Industrial Technology, Chonbuk National University)
  • 박상훈 (전북대학교 공과대학 신소재공학부, 공업기술연구센터) ;
  • 우기도 (전북대학교 공과대학 신소재공학부, 공업기술연구센터) ;
  • 김상혁 (전북대학교 공과대학 신소재공학부, 공업기술연구센터) ;
  • 이승민 (전북대학교 공과대학 신소재공학부, 공업기술연구센터) ;
  • 김지영 (전북대학교 공과대학 신소재공학부, 공업기술연구센터) ;
  • 고혜림 (전북대학교 공과대학 신소재공학부, 공업기술연구센터) ;
  • 김상미 (전북대학교 공과대학 신소재공학부, 공업기술연구센터)
  • Received : 2011.05.04
  • Accepted : 2011.06.13
  • Published : 2011.07.27

Abstract

Ti-6Al-4V ELI (Extra Low Interstitial) alloy has been widely used as an alternative to bone due to its excellent biocompatibility. However, it still has many problems, including a high elastic modulus and toxicity. Therefore, nontoxic biomaterials with a low elastic modulus should be developed. However, the fabrication of a uniform coating is challenging. Moreover, the coating layer on Ti and Ti alloy substrates can be peeled off after implantation. To overcome these problems, it is necessary to produce bulk Ti and Ti alloy with hydroxyapatite (HA) composites. In this study, Ti, Nb, and Zr powders, which are biocompatible elements, were milled in a mixing machine (24h) and by planetary mechanical ball milling (1h, 4h, and 6h), respectively. Ti-35%Nb-7%Zr and Ti-35%Nb-7%Zr-10%HA composites were fabricated by spark plasma sintering (SPS) at $1000^{\circ}C$ under 70MPa using mixed and milled powders. The effects of HA addition and milling time on the biocompatibility and physical and mechanical properties of the Ti-35%Nb-7%Zr-(10%HA) alloys have been investigated. $Ti_2O$, CaO, $CaTiO_3$, and $Ti_xP_y$ phases were formed by chemical reaction during sintering. Vickers hardness of the sintered composites increases with increased milling time and by the addition of HA. The biocompatibilty of the HA added Ti-Nb-Zr alloys was improved, but the sintering ability was decreased.

Keywords

References

  1. M. Long and H. J. Rack, Biomaterials, 19, 1621 (1998). https://doi.org/10.1016/S0142-9612(97)00146-4
  2. H. S. Kim, W. Y. Kim and S. H. Lim, Scripta Mater., 54, 887 (2006). https://doi.org/10.1016/j.scriptamat.2005.11.001
  3. Y. Okazaki, S. Rao, Y. Ito and T. Tateishi, Biomaterials, 19, 1197 (1998). https://doi.org/10.1016/S0142-9612(97)00235-4
  4. K. Wang, Mater. Sci. Eng. A213, 134 (1996).
  5. E. Takahashi, T. Sakurai, S. Watanabe, N. Masahashi and S. Hanada, Mater. Trans. 43, 2978 (2002). https://doi.org/10.2320/matertrans.43.2978
  6. L. M. Elias, S. G. Schneider, S. Schneider, H. M. Silva and F. Malvisi, Mater. Sci. Eng., A432, 108 (2006).
  7. H. S. Kim, S. H. Lim, I. D. Yeo and W. Y. Kim, Mater. Sci. Eng., A449-451, 322 (2007).
  8. S. Ishiyama. S. Hanada and O. Izumi, ISIJ International, 31, 807 (1991). https://doi.org/10.2355/isijinternational.31.807
  9. P. Laheurte, A. Eberhardt and M. J. Philippe, Mater. Sci. Eng., A396, 223 (2005).
  10. S. Nag, R. Banerjee and H. L. Fraser, Acta Biomaterialia, 3, 369 (2007). https://doi.org/10.1016/j.actbio.2006.08.005
  11. Y. L. Hao, S. J. Li, S. Y. Sun and R. Yang, Mater. Sci. Eng., A441, 112 (2006).
  12. R. Gadow, A. Killinger, N. Stiegler, Surf. Coating. Tech., 205, 1157 (2010). https://doi.org/10.1016/j.surfcoat.2010.03.059
  13. C. Renghini, E. Girardin, A. S. Fomin, A. Manescu, A. Sabbioni, S. M. Barinov, V. S. Komlev, G. Albertini and F. Fiori, Mater. Sci. Eng. B, 152, 86 (2008). https://doi.org/10.1016/j.mseb.2008.06.016
  14. H. S. Kim, I. D. Yeo, W. Y. Kim, D. H. Cho, S. H. Lim, M. S. Moon and W. J. Kang, J. Kor. Inst. Met. & Mater. 44, 424 (2006).
  15. Y. M. Zhang, M. D. Thesis (in Chinese), p. 43, Harbin Institute of Technology, P. R. China (2007).
  16. C. Q. Ning and Y. Zhou, Biomaterials, 23, 2909 (2002). https://doi.org/10.1016/S0142-9612(01)00419-7
  17. R. Sun, M. Li, Y. Lu and S. Li, Mater. Res. Bull., 41, 1138 (2006). https://doi.org/10.1016/j.materresbull.2005.11.006
  18. K. D. Woo, H. B. Lee, I. Y. Kim, I. J. Shon and D. L. Zhang, Met. Mater. Int., 14, 327 (2008). https://doi.org/10.3365/met.mat.2008.06.327

Cited by

  1. Microstructure and Biocompatibility of Ti-Nb-Si-HA Composites Fabricated by Rapid Sintering Using HEMM Powders vol.23, pp.7, 2013, https://doi.org/10.3740/MRSK.2013.23.7.353
  2. Microstructure and Mechanical Properties of Nano-Carbon Reinforced Titanium Matrix/Hydroxyapatite Biocomposites Prepared by Spark Plasma Sintering vol.8, pp.9, 2018, https://doi.org/10.3390/nano8090729
  3. Research Progress Regarding Interfacial Characteristics and the Strengthening Mechanisms of Titanium Alloy/Hydroxyapatite Composites vol.11, pp.8, 2018, https://doi.org/10.3390/ma11081391