DOI QR코드

DOI QR Code

Sirt1 Promotes DNA Damage Repair and Cellular Survival

  • Song, Seung-Hyun (Department of Biomedical Science, CHA University) ;
  • Lee, Mi-Ok (Department of Biomedical Science, CHA University) ;
  • Lee, Ji-Seon (Department of Life Sciences, College of Natural Sciences, Sogang University) ;
  • Oh, Je-Sok (Department of Biotechnology and Environmental Engineering, Catholic University) ;
  • Cho, Sung-Uk (Department of Biomedical Science, CHA University) ;
  • Cha, Hyuk-Jin (Department of Life Sciences, College of Natural Sciences, Sogang University)
  • Received : 2011.05.21
  • Accepted : 2011.06.08
  • Published : 2011.07.31

Abstract

Sirt1, a nicotinamide adenine dinucleotide ($NAD^+$)-dependent histone deacetylase, is known to deacetylate a number of proteins that are involved in various cellular pathways such as the stress response, apoptosis and cell growth. Modulation of the stress response by Sirtuin 1 (Sirt1) is achieved by the deacetylation of key proteins in a cellular pathway, and leads to a delay in the onset of cancer or aging. In particular, Sirt1 is known to play an important role in maintaining genomic stability, which may be strongly associated with a protective effect during tumorigenesis and during the onset of aging. In these studies, Sirt1 was generated in stably expressing cells and during the stimulation of DNA damage to examine whether it promotes survival. Sirt1 expressing cells facilitated the repair of DNA damage induced by either ionizing radiation (IR) or bleomycin (BLM) treatment. Fastened damaged DNA repair in Sirt1 expressing cells corresponded to prompt activation of Chk2 and ${\gamma}$-H2AX foci formation and promoted survival. Inhibition of Sirt1 enzymatic activity by a chemical inhibitor, nicotinamide (NIC), delayed DNA damage repair, indicating that promoted DNA damage repair by Sirt1 functions to induce survival when DNA damage occurs.

Keywords

References

  1. Bao, S., Wu, Q., McLendon, R. E., Hao, Y., Shi, Q., Hjelmeland, A. B., Dewhirst, M. W., Bigner, D. D. and Rich, J. N. (2006). Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature 444, 756-760. https://doi.org/10.1038/nature05236
  2. Bitterman, K. J., Anderson, R. M., Cohen, H. Y., Latorre-Esteves, M. and Sinclair, D. A. (2002). Inhibition of silencing and accelerated aging by nicotinamide, a putative negative regulator of yeast sir2 and human SIRT1. J. Biol. Chem. 277, 45099-45107. https://doi.org/10.1074/jbc.M205670200
  3. Bradbury, C. A., Khanim, F. L., Hayden, R., Bunce, C. M., White, D. A., Drayson, M. T., Craddock, C. and Turner, B. M. (2005). Histone deacetylases in acute myeloid leukaemia show a distinctive pattern of expression that changes selectively in response to deacetylase inhibitors. Leukemia 19, 1751-1759. https://doi.org/10.1038/sj.leu.2403910
  4. Brooks, C. L. and Gu, W. (2009). How does SIRT1 affect metabolism, senescence and cancer? Nat. Rev. Cancer 9, 123-128. https://doi.org/10.1038/nrc2562
  5. Burma, S., Chen, B. P., Murphy, M., Kurimasa, A. and Chen, D. J. (2001). ATM phosphorylates histone H2AX in response to DNA double-strand breaks. J. Biol. Chem. 276, 42462-42467. https://doi.org/10.1074/jbc.C100466200
  6. Cha, H., Lowe, J. M., Li, H., Lee, J. S., Belova, G. I., Bulavin, D. V. and Fornace, A. J. Jr. (2010). Wip1 directly dephosphorylates gamma-H2AX and attenuates the DNA damage response. Cancer Res. 70, 4112-4122. https://doi.org/10.1158/0008-5472.CAN-09-4244
  7. Chang, C. J., Hsu, C. C., Yung, M. C., Chen, K. Y., Tzao, C., Wu, W. F., Chou, H. Y., Lee, Y. Y., Lu, K. H., Chiou, S. H. and Ma, H. I. (2009). Enhanced radiosensitivity and radiation-induced apoptosis in glioma CD133-positive cells by knockdown of SirT1 expression. Biochem. Biophys. Res. Commun. 380, 236-242. https://doi.org/10.1016/j.bbrc.2009.01.040
  8. Cohen, H. Y., Miller, C., Bitterman, K. J., Wall, N. R., Hekking, B., Kessler, B., Howitz, K. T., Gorospe, M., de Cabo, R. and Sinclair, D. A. (2004). Calorie restriction promotes mammalian cell survival by inducing the SIRT1 deacetylase. Science 305, 390-392. https://doi.org/10.1126/science.1099196
  9. Dean, M., Fojo, T. and Bates, S. (2005). Tumour stem cells and drug resistance. Nat. Rev. Cancer 5, 275-284. https://doi.org/10.1038/nrc1590
  10. Deng, C. (2009). SIRT1, is it a tumor promoter or tumor suppressor? Int. J. Biol. Sci. 5, 147-152.
  11. Franken, N. A., Rodermond, H. M., Stap, J., Haveman, J. and van Bree, C. (2006). Clonogenic assay of cells in vitro. Nat. Protoc. 1, 2315-2319. https://doi.org/10.1038/nprot.2006.339
  12. Guarente, L. and Picard, F. (2005). Calorie restriction--the SIR2 connection. Cell 120, 473-482. https://doi.org/10.1016/j.cell.2005.01.029
  13. Hong, E. H., Lee, S. J., Kim, J. S., Lee, K. H., Um, H. D., Kim, J. H., Kim, S. J., Kim, J. I. and Hwang, S. G. (2010). Ionizing radiation induces cellular senescence of articular chondrocytes via negative regulation of SIRT1 by p38 kinase. J. Biol. Chem. 285, 1283-1295. https://doi.org/10.1074/jbc.M109.058628
  14. Huffman, D. M., Grizzle, W. E., Bamman, M. M., Kim, J. S., Eltoum, I. A., Elgavish, A. and Nagy, T. R. (2007). SIRT1 is signifi cantly elevated in mouse and human prostate cancer. Cancer Res. 67, 6612-6618. https://doi.org/10.1158/0008-5472.CAN-07-0085
  15. Jeong, J., Juhn, K., Lee, H., Kim, S., Min, B., Lee, K., Cho, M., Park, G. and Lee, K. (2007). SIRT1 promotes DNA repair activity and deacetylation of Ku70. Exp. Mol. Med. 39, 8-13. https://doi.org/10.1038/emm.2007.2
  16. Keogh, M., Kim, J., Downey, M., Fillingham, J., Chowdhury, D., Harrison, J., Onishi, M., Datta, N., Galicia, S., Emili, A., Lieberman, J., Shen, X., Buratowski, S., Haber, J., Durocher, D., Greenblatt, J. and Krogan, N. (2006). A phosphatase complex that dephosphorylates gammaH2AX regulates DNA damage checkpoint recovery. Nature 439, 497-501. https://doi.org/10.1038/nature04384
  17. Kim, E. J., Kho, J. H., Kang, M. R. and Um, S. J. (2007). Active regulator of SIRT1 cooperates with SIRT1 and facilitates suppression of p53 activity. Mol. Cell 28, 277-290. https://doi.org/10.1016/j.molcel.2007.08.030
  18. Lee, J. S., Lee, M. O., Moon, B. H., Shim, S. H., Fornace, A. J. Jr. and Cha, H. J. (2009). Senescent growth arrest in mesenchymal stem cells is bypassed by Wip1-mediated downregulation of intrinsic stress signaling pathways. Stem Cells 27, 1963-1975. https://doi.org/10.1002/stem.121
  19. Lee, J. S., Park, K. Y., Min, H. G., Lee, S. J., Kim, J. J., Choi, J. S., Kim, W. S. and Cha, H. J. (2010). Negative regulation of stress-induced matrix metalloproteinase-9 by Sirt1 in skin tissue. Exp. Dermatol. 19, 1060-1066. https://doi.org/10.1111/j.1600-0625.2010.01129.x
  20. Michan, S. and Sinclair, D. (2007). Sirtuins in mammals: insights into their biological function. Biochem. J. 404, 1-13. https://doi.org/10.1042/BJ20070140
  21. Mochan, T. A., Venere, M., DiTullio, R. A. Jr. and Halazonetis, T. D. (2003). 53BP1 and NFBD1/MDC1-Nbs1 function in parallel interacting pathways activating ataxia-telangiectasia mutated (ATM) in response to DNA damage. Cancer Res. 63, 8586-8591.
  22. Motta, M. C., Divecha, N., Lemieux, M., Kamel, C., Chen, D., Gu, W., Bultsma, Y., McBurney, M. and Guarente, L. (2004). Mammalian SIRT1 represses forkhead transcription factors. Cell 116, 551-563. https://doi.org/10.1016/S0092-8674(04)00126-6
  23. Sedding, D. G. (2008). FoxO transcription factors in oxidative stress response and ageing--a new fork on the way to longevity? Biol. Chem. 389, 279-283. https://doi.org/10.1515/BC.2008.033
  24. Stunkel, W., Peh, B. K., Tan, Y. C., Nayagam, V. M., Wang, X., Salto- Tellez, M., Ni, B., Entzeroth, M. and Wood, J. (2007). Function of the SIRT1 protein deacetylase in cancer. Biotechnol. J. 2, 1360-1368. https://doi.org/10.1002/biot.200700087
  25. Vaziri, H., Dessain, S. K., Ng Eaton, E., Imai, S. I., Frye, R. A., Pandita, T. K., Guarente, L. and Weinberg, R. A. (2001). hSIR2(SIRT1) functions as an NAD-dependent p53 deacetylase. Cell 107, 149-159. https://doi.org/10.1016/S0092-8674(01)00527-X
  26. Wang, R., Sengupta, K., Li, C., Kim, H., Cao, L., Xiao, C., Kim, S., Xu, X., Zheng, Y., Chilton, B., Jia, R., Zheng, Z., Appella, E., Wang, X., Ried, T. and Deng, C. (2008). Impaired DNA damage response, genome instability, and tumorigenesis in SIRT1 mutant mice. Cancer Cell 14, 312-323. https://doi.org/10.1016/j.ccr.2008.09.001
  27. Yeung, F., Hoberg, J. E., Ramsey, C. S., Keller, M. D., Jones, D. R., Frye, R. A. and Mayo, M. W. (2004). Modulation of NF-kappaB-dependent transcription and cell survival by the SIRT1 deacetylase. EMBO J. 23, 2369-2380. https://doi.org/10.1038/sj.emboj.7600244
  28. Yuan, Z., Zhang, X., Sengupta, N., Lane, W. and Seto, E. (2007). SIRT1 regulates the function of the Nijmegen breakage syndrome protein. Mol. Cell 27, 149-162. https://doi.org/10.1016/j.molcel.2007.05.029

Cited by

  1. Discovery of a potent small molecule SIRT1/2 inhibitor with anticancer effects vol.43, pp.4, 2013, https://doi.org/10.3892/ijo.2013.2035
  2. ERK Dephosphorylation through MKP1 Deacetylation by SIRT1 Attenuates RAS-Driven Tumorigenesis vol.12, pp.4, 2011, https://doi.org/10.3390/cancers12040909