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Abstract
In this paper following Singh et al. (2008), we propose a modified ratio-product type exponential estimator

to estimate the finite population mean Ȳ of the study variable y in presence of non-response in different situations
viz. (i) population mean X̄ is known, and (ii) population mean X̄ is unknown. The expressions of biases and mean
squared error of the proposed estimators have been obtained under large sample approximation using single as
well as double sampling. Some realistic conditions have been obtained under which the proposed estimator
is more efficient than usual unbiased estimators, ratio estimators, product estimators and exponential ratio and
product estimators reported by Rao (1986) and Singh et al. (2010) are found to be more efficient in many
situations.

Keywords: Study variable, auxiliary variable, bias, mean squared error, exponential estimator,
non-response.

1. Introduction

The problem of non-response in sample surveys is common and is more prevalent in mail surveys
than in personal interview surveys. Hansen and Hurwitz (1946) have given a sampling plan that calls
for taking a sub sample of non-respondents after the first mail attempt and then enumerating the sub
sample by personal interview (see Srinath, 1971). In estimating population parameters like the mean,
total or ratio, sample survey experts sometimes use auxiliary information to improve precision of the
estimators. Further, various authors like Cochran (1977), Rao (1986, 1987), Khare and Srivastava
(1993, 1995, 1997), Okafor and Lee (2000), Tabasum and Khan (2004, 2006), Singh and Kumar
(2008, 2009a, 2009b, 2010) and Singh et al. (2010) studied the problem of non-response under double
(two-stage) sampling.

Consider a finite population of size N and a random sample of size n drawn without replacement.
In surveys on human populations, frequently n1 units respond on the items under examination in the
first attempt while remaining n2 (= n − n1) units do not provide any response. When non-response
occurs in the initial attempt, Hansen and Hurwitz (1946) proposed a double sampling scheme to
estimate the population mean:

i) a simple random sample of size n is selected and the questionnaire is mailed to the sampled units;

ii) a sub sample of size r = (n2/k), (k ≥ 1) from the n2 non-responding units in the initial attempt is
contacted through personal interviews.
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In this procedure the population is supposed to be consisting of the response stratum of size N1 and
the non-response stratum of size N2 (= N − N1). Let Ȳ =

∑N
i=1 yi/N and S 2

y =
∑N

i=1(yi − Ȳ)2/(N − 1)
denote the population mean and the population variance of the survey variable y. Let Ȳ1 =

∑N1
i=1 yi/N1

and S 2
y(1) =

∑N1
i=1(yi − Ȳ1)2/(N1 − 1) denote the mean and variance of the response group. Similarly,

let Ȳ2 =
∑N2

i=1 yi/N2 and S 2
y(2) =

∑N2
i=1(yi − Ȳ2)2/(N2 − 1) denote the mean and variance of the non-

response group. The population mean can be written as Ȳ = W1Ȳ1 + W2Ȳ2, where W1 = (N1/N)
and W2 = (N2/N). Let ȳ1 =

∑n1
i=1 yi/n1 and ȳ2 =

∑n2
i=1 yi/n2 denote the means of the n1 responding

units and the n2 non-responding units. Further, let ȳ2r =
∑r

i=1 yi/r denote the mean of the r = n2/k
sub sampled units. Thus, an unbiased estimator, due to Hansen and Hurwitz (1946) of the population
mean Ȳ of the study variable y is given by

ȳ∗ = w1ȳ1 + w2ȳ2r, (1.1)

where w1 = (n1/n), w2 = (n2/n) are responding and non-responding proportions in the sample. The
variance of ȳ∗ to terms of order n−1, is given by

Var (ȳ∗) = Ȳ2
{(

1 − f
n

)
C2

y +
W2(k − 1)

n
C2

y(2)

}
, (1.2)

where C2
y = (S 2

y/Ȳ
2), C2

y(2) = (S 2
y(2)/Ȳ

2).
Let xi (i = 1, 2, . . . ,N) denote an auxiliary variable correlated with the study variable yi (i =

1, 2, . . . ,N) . The population mean of the auxiliary variable x is X̄ =
∑N

i=1 xi/N. Let X̄1 =
∑N1

i=1 xi/N1

and X̄2 =
∑N2

i=1 xi/N2 denote the population means of the response and non-response groups (or strata).
Let x̄ =

∑n
i=1 xi/n denote the mean of all the n units. Let x̄1 =

∑n1
i=1 xi/n1 and x̄2 =

∑n2
i=1 xi/n2 denote

the means of the n1 responding units and n2 non-responding units. Further, let x̄2r =
∑r

i=1 xi/r denote
the mean of the r (= n2/k), k > 1 sub-sampled units. With this background we define an unbiased
estimator of the population mean X̄ as

x̄∗ = w1 x̄1 + w2 x̄2r. (1.3)

The variance of x̄∗ is given by

Var (x̄∗) = X̄2
{(

1 − f
n

)
C2

x +
W2(k − 1)

n
C2

x(2)

}
, (1.4)

where C2
x = (S 2

x/X̄
2), C2

x(2) = (S 2
x(2)/X̄

2), S 2
x =

∑N
i=1(xi−X̄)2/(N−1) and S 2

x(2) =
∑N2

i=1(xi−X̄2)2/(N2−1).
In some situations, there may not be any non-response on the auxiliary variables. Family size,

years of education, and years of employment are the above type of auxiliary variables, see Rao (1986,
p.220). When the population mean X̄ of the auxiliary variable x is known, Rao (1986) suggested a
ratio estimator for the population mean Ȳ of the study variable y as

t∗1 = ȳ∗
(

X̄
x̄∗

)
. (1.5)

Khare and Srivastava (1993) suggested a product estimator for the population mean Ȳ of the study
variable y as

t∗2 = ȳ∗
(

x̄∗

X̄

)
. (1.6)
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An exponential ratio and product type estimators for the population mean Ȳ of the study variable y are

t∗3 = ȳ∗ exp
(

X̄ − x̄∗

X̄ + x̄∗

)
(1.7)

and

t∗4 = ȳ∗ exp
(

x̄∗ − X̄
x̄∗ + X̄

)
. (1.8)

The objective of this paper is to suggest a ratio-product type exponential estimator for estimating
the finite population mean in the presence of non-response in different situations viz. (i) population
mean X̄ is known, and (ii) population mean X̄ is unknown. The expressions of biases and mean
squared errors of the proposed estimators, up to the first order of approximation, have been obtained.
The results obtained are depicted with the help of numerical illustration.

2. Proposed Estimators

In general, the linear regression estimator is more efficient than the ratio (product) estimator except
when the regression line of y on x passes through the neighborhood of the origin, in which case
the efficiencies of these estimators are almost equal. In addition, in many practical situations the
regression line does not pass through the neighborhood of the origin. In these situations, the ratio
estimator does not perform as good as the linear regression estimator.

Singh et al. (2008) proposed a ratio-product type exponential estimator by following Singh and
Ruize Espejo (2003) for estimating the finite population mean. Following Singh et al. (2008), we
propose following class of ratio-product estimators for estimating population mean Ȳ of the study
variable y in presence of non-response, as

t∗5 = ȳ∗
{
α exp

(
X̄ − x̄∗

X̄ + x̄∗

)
+ (1 − α) exp

(
x̄∗ − X̄
x̄∗ + X̄

)}
, (2.1)

where α is a real constant to be determined such that the MSE of t∗5 is minimum.
For α = 0, 1 the class of estimators respectively reduce to the estimator t∗4 and t∗3 respectively. To

obtain the bias and variance of t∗5, we write

ȳ∗ = Ȳ(1 + ϵ0); x̄∗ = X̄(1 + ϵ1),

such that

E(ϵ0) = E(ϵ1) = 0

and

E
(
ϵ2

0

)
= Var(ȳ∗) = Ȳ2

{(
1 − f

n

)
C2

y +
W2(k − 1)

n
C2

y(2)

}
,

E
(
ϵ2

1

)
= Var(x̄∗) = X̄2

{(
1 − f

n

)
C2

x +
W2(k − 1)

n
C2

x(2)

}
,

E (ϵ0ϵ1) = Cov(ȳ∗, x̄∗) = Ȳ X̄
{(

1 − f
n

)
ρyxCyCx +

W2(k − 1)
n

ρyx(2)Cy(2)Cx(2)

}
,
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where ρyx = S yx/(S xS y); ρyx(2) = S yx(2)/(S x(2)S y(2)); S yx = 1/(N − 1)
∑N

i=1(yi − Ȳ)(xi − X̄); and
S yx(2) = 1/(N2 − 1)

∑N2
i=1(yi − Ȳ2)(xi − X̄2).

Now, expressing t∗5 in terms of ϵ’s we have

t∗5 = Ȳ(1 + ϵ0)
[
α exp

{
X̄ − X̄(1 + ϵ1)
X̄ + X̄(1 + ϵ1)

}
+ (1 − α) exp

{
X̄(1 + e1) − X̄
X̄(1 + e1) + X̄

}]
= Ȳ(1 + ϵ0)

[
α exp

(
−ϵ1

2 + ϵ1

)
+ (1 − α) exp

(
ϵ1

2 + ϵ1

)]
= Ȳ(1 + ϵ0)

[
α exp

{
−ϵ1

2

(
1 +

ϵ1

2

)−1
}
+ (1 − α) exp

{
ϵ1

2

(
1 +

ϵ1

2

)−1
}]
. (2.2)

Expanding the right hand side of (2.2) and neglecting the terms involving powers of ϵ’s greater than
two, we have

t∗5 = Ȳ
1 + ϵ0 +

ϵ1

2
− αϵ1 +

ϵ2
1

4
+
ϵ0ϵ1

2
− αϵ0ϵ1


(
t∗5 − Ȳ

)
= Ȳ

ϵ0 +
ϵ1

2
− αϵ1 +

ϵ2
1

4
+
ϵ0ϵ1

2
− αϵ0ϵ1

 . (2.3)

Taking expectations of both sides of (2.3), we get the bias of the estimator t∗5 as

B
(
t∗5
)
=

Ȳ
4

[(
1 − f

n

) {
1 + 2(1 − 2α)kyx

}
C2

x +
W2(k − 1)

n

{
1 + 2(1 − 2α)kyx(2)

}
C2

x(2)

]
, (2.4)

where kyx = ρyxCy/Cx; kyx(2) = ρyx(2)Cy(2)/Cx(2).
Squaring both sides of (2.3) and neglecting terms of ϵ’s involving power greater than two, we have

(
t∗5 − Ȳ

)2
= Ȳ2

{
ϵ0 + ϵ1

(
1
2
− α

)}2

= Ȳ2
{
ϵ2

0 + ϵ
2
1

(
1
4
+ α2 − α

)
+ 2ϵ0ϵ1

(
1
2
− α

)}
(
t∗5 − Ȳ

)2
= Ȳ2

{
ϵ2

0 + ϵ
2
1

(
1
4
+ α2 − α

)
+ ϵ0ϵ1 (1 − 2α)

}
. (2.5)

Taking expectations of both sides of (2.5), we get the exact mean squared error(MSE) of t∗5 and ap-
proximation (to the first degree of approximation) MSE of t∗5, as

MSE
(
t∗5
)
= Ȳ2

[ (
1 − f

n

) {
C2

y +C2
x

(
1
4
+ α2 − α

)
+ ρyxCyCx (1 − 2α)

}
+

W2(k − 1)
n

{
C2

y(2) +C2
x(2)

(
1
4
+ α2 − α

)
+ ρyx(2)Cy(2)Cx(2) (1 − 2α)

} ]
. (2.6)

Minimization of (2.6) with respect to ‘α’ yields its optimum value as

α =
A + 2B

2A
= α0(say), (2.7)
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where A = {(1 − f )/n}C2
x + {W2(k − 1)}/n C2

x(2), B = {(1 − f )/n}kyxC2
x + {W2(k − 1)}/n kyx(2)C2

x(2).
Substitute the optimum value of ‘α’ from (2.7) in (2.1) yields the optimum estimator as

t∗5(opt) = ȳ∗
{
α0 exp

(
X̄ − x̄∗

X̄ + x̄∗

)
+ (1 − α0) exp

(
x̄∗ − X̄
x̄∗ + X̄

)}
. (2.8)

The exact MSE of the optimum estimator t∗5(opt) is given by

MSE
(
t∗5(opt)

)
= min MSE

(
t∗5
)
= Ȳ2

[ (
1 − f

n

) {
C2

y +
B
A

(B
A
− 2kyx

)
C2

x

}
+

W2(k − 1)
n

{
C2

y(2) +
B
A

(B
A
− 2kyx(2)

)
C2

x(2)

} ]
. (2.9)

3. Efficiency Comparisons

In this section, the conditions for which the proposed estimator t∗5 is better than the usual unbiased
estimator ȳ∗, t∗1, t∗2, t∗3 and t∗4 have been obtained. The MSE’s of these estimators to the first degree of
approximation are derived as

Var (ȳ∗) = Ȳ2
[(

1 − f
n

)
C2

y +
W2(k − 1)

n
C2

y(2)

]
, (3.1)

MSE
(
t∗1
)
= Ȳ2

[(
1 − f

n

) {
C2

y +
(
1 − 2kyx

)
C2

x

}
+

W2(k − 1)
n

{
C2

y(2) +
(
1 − 2kyx(2)

)
C2

x(2)

}]
, (3.2)

MSE
(
t∗2
)
= Ȳ2

[(
1 − f

n

) {
C2

y +
(
1 + 2kyx

)
C2

x

}
+

W2(k − 1)
n

{
C2

y(2) +
(
1 + 2kyx(2)

)
C2

x(2)

}]
, (3.3)

MSE
(
t∗3
)
= Ȳ2

(1 − f
n

) {
C2

y +
C2

x

4

(
1 − 4kyx

)}
+

W2(k − 1)
n

C2
y(2) +

C2
x(2)

4

(
1 − 4kyx(2)

)
 , (3.4)

MSE
(
t∗4
)
= Ȳ2

(1 − f
n

) {
C2

y +
C2

x

4

(
1 + 4kyx

)}
+

W2(k − 1)
n

C2
y(2) +

C2
x(2)

4

(
1 + 4kyx(2)

)
 . (3.5)

To compare the efficiency of the proposed estimator t∗5 with the existing estimators, from (2.9) and
(3.1)–(3.5), we have

Var (ȳ∗) −MSE
(
t∗5(opt)

)
=

(
1 − f

n

)
kyxC2

x +
W2(k − 1)

n
kyx(2)C2

x(2) ≥ 0, (3.6)

MSE
(
t∗1
) −MSE

(
t∗5(opt)

)
=

(
1 − f

n

) (
1 − kyx

)
C2

x +
W2(k − 1)

n

(
1 − kyx(2)

)
C2

x(2) ≥ 0, (3.7)

MSE
(
t∗2
) −MSE

(
t∗5(opt)

)
=

(
1 − f

n

) (
1 + kyx

)
C2

x +
W2(k − 1)

n

(
1 + kyx(2)

)
C2

x(2) ≥ 0, (3.8)

MSE
(
t∗3
) −MSE

(
t∗5(opt)

)
=

(
1 − f

n

) (
1 − 2kyx

)
C2

x +
W2(k − 1)

n

(
1 − 2kyx(2)

)
C2

x(2) ≥ 0, (3.9)

MSE
(
t∗4
) −MSE

(
t∗5(opt)

)
=

(
1 − f

n

) (
1 + 2kyx

)
C2

x +
W2(k − 1)

n

(
1 + 2kyx(2)

)
C2

x(2) ≥ 0. (3.10)
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From (3.6)–(3.10), we conclude that the proposed estimator t∗5 outperforms the usual unbiased esti-
mator ȳ∗, t∗1, t∗2, t∗3 and t∗4. If α does not coincide with α0, i.e. α = α0, then from (3.1), (3.2), (3.3),
(3.4), (3.5) and (2.6), we envisaged that the suggested estimator t∗5 is better than

i) the usual unbiased estimator ȳ∗ if
either

1
2
< α <

1
2

(
1 + 4kyx

)
and

1
2
< α <

1
2

(
1 + 4kyx(2)

)
,

or
1
2

(
1 + 4kyx

)
< α <

1
2

and
1
2

(
1 + 4kyx(2)

)
< α <

1
2
,

(3.11)

ii) the ratio estimator t∗1 if
either

3
2
< α <

1
2

(
4kyx − 1

)
and

3
2
< α <

1
2

(
4kyx(2) − 1

)
,

or
1
2

(
4kyx − 1

)
< α <

3
2

and
1
2

(
4kyx(2) − 1

)
< α <

3
2
,

(3.12)

iii) the product estimator t∗2 if
either

1
2
< α <

1
2

(
4kyx + 3

)
and

1
2
< α <

1
2

(
4kyx(2) + 3

)
,

or
1
2

(
4kyx + 3

)
< α <

1
2

and
1
2

(
4kyx(2) + 3

)
< α <

1
2
,

(3.13)

iv) the exponential ratio type estimator t∗3 if{
either 1 < α < kyx and 1 < α < kyx(2),

or kyx < α < 1 and kyx(2) < α < 1,
(3.14)

v) the exponential product type estimator t∗4 if{
either 0 < α < 1 + 2kyx and 0 < α < 1 + 2kyx(2),

or 1 + 2kyx < α < 0 and 1 + 2kyx(2) < α < 0.
(3.15)

The proposed class of ratio product estimator t∗5 is more efficient than ȳ∗, t∗1, t∗2, t∗3 and t∗4 respectively,
if (3.10), (3.11), (3.12), (3.13) and (3.14) respectively hold true.

4. Empirical Study

To see the performance of the suggested estimators of the population mean, we consider a natural
dataset considered by Khare and Srivastava (1993). The description of the population is given below:

A list of 70 villages in India along their population in 1981 and cultivated areas (in acres) in the
same year is considered (Singh and Choudhary, 1986). Here the cultivated area (in acres) is taken
as the main study variable and the population of the village is taken as the auxiliary variable. The
parameters of the population are as follows:

Ȳ = 981.29, X̄ = 1755.53, Cy = 0.6254, Cx = 0.8009, Ȳ2 = 597.29, X̄2 = 1100.24,
Cy(2) = 0.4087, Cx(2) = 0.5739, ρyx = 0.778, ρyx(2) = 0.445, R = 0.558971,
kyx = 0.6075, kyx(2) = 0.3169, W2 = 0.20, N = 70, n = 35.
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Table 1: Percent-relative efficiency(PRE) of different estimators

PRE ( · , ȳ∗) (1/k)
(1/5) (1/4) (1/3) (1/2)

PRE
(
t∗1, ȳ

∗
)

92.52 99.18 109.01 125.00
PRE

(
t∗2, ȳ

∗
)

22.43 22.29 22.12 21.91
PRE

(
t∗3, ȳ

∗
)

167.29 176.31 189.09 208.59
PRE

(
t∗4, ȳ

∗
)

43.67 43.31 42.88 42.32
PRE

(
t∗5(opt), ȳ

∗
)

167.58 176.35 189.38 211.05

We have computed the percent-relative efficiencies(PRE’s) of various suggested estimators with
respect to the usual unbiased estimator ȳ∗ for various values of k, by using the formulae

PRE
(
t∗i , ȳ

∗) = Var (ȳ∗)
MSE (∗) × 100; i = 1, 2, 3, 4 and 5(opt).

It is to be envisaged from Table 1 that the PRE’s of the ratio type estimators t∗1, t∗3 and t∗5 increase
while the PRE’s of the product type estimators t∗2 and t∗4 decrease as the value of k increases. Further,
it has been observed that the estimator t∗5 is the best among ȳ∗, t∗1, t∗2, t∗3 and t∗4. Thus, the suggested
estimator t∗5 is to be recommended for its use in practice.

5. Double (Two-Stage) Sampling

In many of the large scale sample surveys a multi-stage sampling design is generally used for selection
of a sample and data are collected for several items. However, it is noted that information in most cases
are not obtained at the first attempt even after some call-backs. For the estimate of population mean X̄
of the auxiliary variable x, a large first phase sample of size n′ is selected from a population of size N
units by simple random sampling without replacement(SRSWOR). A smaller second phase sample of
size ‘n’ is selected from n′ by SRSWOR and the variable ‘y’ under study is measured on it; however,
take a sub-sample of the non-respondents and re-conduct them if there is non-response in the second
phase sample.

Let us assume that at the first phase, all the n′ units supplied information on the auxiliary variable
x. At the second phase from sample n, let n1 units supply information on y and n2 refuse to respond.
Using Hansen and Hurwitz (1946) approach to sub-sampling from the n2 non-respondents a sub-
sample of size m units is selected at random and is enumerated by direct interview, such that

m =
n2

k
, k > 1 (see, Tabasum and Khan, 2004).

When the population mean ‘X̄’ of the auxiliary variable ‘x’ is unknown, the two phase ratio and
product type estimator are

t∗6 = ȳ∗
(

x̄′

x̄∗

)
,

(by Khare and Srivastava, 1995; Okafor and Lee, 2000;
Tabasum and Khan, 2004), (5.1)

t∗7 = ȳ∗
(

x̄∗

x̄′

)
,

(by Khare and Srivastava, 1995; Okafor and Lee, 2000;
Tabasum and Khan, 2004), (5.2)

where x̄′ denote the sample mean of x based on first phase sample of size n′.
The two phase ratio and product type exponential estimator

t∗8 = ȳ∗ exp
[

x̄′ − x̄∗

x̄′ + x̄∗

]
, (by Singh et al., 2010) (5.3)
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and

t∗9 = ȳ∗ exp
[

x̄∗ − x̄′

x̄∗ + x̄′

]
, (by Singh et al., 2010). (5.4)

The MSE of the estimators t∗6, t∗7, t∗8 and t∗9 is given by

MSE
(
t∗6
)
= Ȳ2

[(
1
n
− 1

n′

){
C2

y+
(
1−2kyx

)
C2

x

}
+

W2(k−1)
n

{
C2

y(2)+
(
1−2kyx(2)

)
C2

x(2)

}
+

(
1
n′
− 1

N

)
C2

y

]
, (5.5)

MSE
(
t∗7
)
= Ȳ2

[(
1
n
− 1

n′

){
C2

y+
(
1+2kyx

)
C2

x

}
+

W2(k−1)
n

{
C2

y(2)+
(
1+2kyx(2)

)
C2

x(2)

}
+

(
1
n′
− 1

N

)
C2

y

]
, (5.6)

MSE
(
t∗8
)
= Ȳ2

(1
n
− 1

n′

){
C2

y+
(
1−4kyx

)C2
x

4

}
+

W2(k−1)
n

C2
y(2)+

(
1−4kyx(2)

)C2
x(2)

4

+
(
1
n′
− 1

N

)
C2

y

 , (5.7)

MSE
(
t∗9
)
= Ȳ2

(1
n
− 1

n′

){
C2

y+
(
1+4kyx

)C2
x

4

}
+

W2(k−1)
n

C2
y(2)+

(
1+4kyx(2)

)C2
x(2)

4

+
(
1
n′
− 1

N

)
C2

y

 . (5.8)

6. Suggested Estimator

We define a class of ratio-product estimator for estimating the population mean Ȳ of the study variable
y in presence of non-response, as

t∗10 = ȳ∗
[
α1 exp

(
x̄′ − x̄∗

x̄′ + x̄∗

)
+ (1 − α1) exp

(
x̄∗ − x̄′

x̄∗ + x̄′

)]
, (6.1)

where α1 is a real constant to be determined such that MSE of t∗10 is minimum.
For α1 = 1, t∗10 reduces to estimator t∗8, and for α1 = 0, t∗10 reduces to t∗9, respectively. Let

x̄′ = X̄(1 + ϵ2) such that E(ϵ2) = 0 and

E
(
ϵ2

2

)
=

(
1
n′
− 1

N

)
C2

x; E(ϵ1ϵ2) =
(

1
n′
− 1

N

)
C2

x; E(ϵ0ϵ2) =
(

1
n′
− 1

N

)
ρyxCyCx.

Expressing (6.1) in terms of ϵ’s, we get

(
t∗10 − Ȳ

)
= Ȳ

{
ϵ0 +

(
ϵ1 − ϵ2

2

)
+ α1(ϵ2 − ϵ1) + α1ϵ0ϵ2 − α1ϵ0ϵ1 +

(ϵ1 − ϵ2)2

4
+
ϵ0ϵ1

2
− ϵ0ϵ2

2

}
. (6.2)

Taking expectations of both sides of (6.2), we get the bias of the proposed estimator t∗10, up to the first
degree of approximation, as

B
(
t∗10

)
= Ȳ

1
4

(
1
n
− 1

n′

)
C2

x

{
1 − 4

(
α1 −

1
2

)
kyx

}
+

W2(k − 1)
n

C2
x(2)

4

{
1 − 4

(
α1 −

1
2

)
kyx(2)

} . (6.3)

From (6.2), we have (
t∗10 − Ȳ

)
� Ȳ

{
ϵ0 +

(
ϵ1 − ϵ2

2

)
+ α1(ϵ2 − ϵ1)

}2
. (6.4)
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Squaring both sides of (6.4) and then taking expectations, we get the MSE of the proposed estimator
t∗10, up to the first order of approximation as

MSE
(
t∗10

)
= Ȳ2

[ (
1
n
− 1

n′

) {
C2

y +

(
α1 −

1
2

) ((
α1 −

1
2

)
− 2kyx

)
C2

x

}
+

(
1
n′
− 1

N

)
C2

y

+
W2(k − 1)

n

{
C2

y(2) +

(
α1 −

1
2

) ((
α1 −

1
2

)
− 2kyx(2)

)
C2

x(2)

} ]
, (6.5)

which is minimum when

α1 =
A(2) + 2B(2)

2A(2)
= α10(say),

where

A(2) =

(
1
n
− 1

n′

)
C2

x +
W2(k − 1)

n
C2

x(2); B(2) =

(
1
n
− 1

n′

)
kyxC2

x +
W2(k − 1)

n
kyx(2)C2

x(2).

Thus, the resulting minimum MSE of t∗10 is given by

MSE
(
t∗10(opt)

)
= Ȳ2

[ (
1
n
− 1

n′

) {
C2

y +
B(2)

A(2)

(
B(2)

A(2)
− 2kyx

)
C2

x

}
+

W2(k − 1)
n

{
C2

y(2) +
B(2)

A(2)

(
B(2)

A(2)
− 2kyx(2)

)
C2

x(2)

}
+

(
1
n′
− 1

N

)
C2

y

]
. (6.6)

7. Efficiency Comparisons

From (3.1), (5.5), (5.6), (5.7), (5.8) and (6.6), we have

Var (ȳ∗) −MSE
(
t∗10(opt)

)
=

(
1
n
− 1

n′

)
kyxC2

x +
W2(k − 1)

n
k2

yx(2)C
2
x(2) ≥ 0, (7.1)

MSE
(
t∗6
)
−MSE

(
t∗10(opt)

)
=

(
1
n
− 1

n′

) (
1 − kyx

)
C2

x +
W2(k − 1)

n

(
1 − kyx(2)

)
C2

x(2) ≥ 0, (7.2)

MSE
(
t∗7
)
−MSE

(
t∗10(opt)

)
=

(
1
n
− 1

n′

) (
1 + kyx

)
C2

x +
W2(k − 1)

n

(
1 + kyx(2)

)
C2

x(2) ≥ 0, (7.3)

MSE
(
t∗8
)
−MSE

(
t∗10(opt)

)
=

(
1
n
− 1

n′

) (
1 − 2kyx

)
C2

x +
W2(k − 1)

n

(
1 − 2kyx(2)

)
C2

x(2) ≥ 0, (7.4)

MSE
(
t∗9
)
−MSE

(
t∗10(opt)

)
=

(
1
n
− 1

n′

) (
1 + 2kyx

)
C2

x +
W2(k − 1)

n

(
1 + 2kyx(2)

)
C2

x(2) ≥ 0. (7.5)

From (7.1)–(7.5), it is envisaged that the proposed estimator t∗10 is more efficient than the estimators
t∗6, t∗7, t∗8 and t∗9 respectively. If α1 does not coincide with α10, i.e. α1 , α10, then from (7.1), (7.2),
(7.3), (7.4), (7.5) and (6.5), we envisaged that the suggested estimator t∗10 is better than

i) the usual unbiased estimator ȳ∗ if
either

1
2
< α1 <

1
2

(
1 + 4kyx

)
and

1
2
< α1 <

1
2

(
1 + 4kyx(2)

)
,

or
1
2

(
1 + 4kyx

)
< α1 <

1
2

and
1
2

(
1 + 4kyx(2)

)
< α1 <

1
2
,

(7.6)
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ii) the ratio estimator t∗6 if either 0 < α1 <
(
1 + kyx

)
and 0 < α1 <

(
1 + kyx(2)

)
,

or
(
1 + kyx

)
< α1 < 0 and

(
1 + kyx(2)

)
< α1 < 0,

(7.7)

iii) the product estimator t∗7 if
either −1

2
< α1 <

1
2

(
4kyx + 3

)
and − 1

2
< α1 <

1
2

(
4kyx(2) + 3

)
,

or
1
2

(
4kyx + 3

)
< α1 < −

1
2

and
1
2

(
4kyx(2) + 3

)
< α1 < −

1
2
,

(7.8)

iv) the exponential ratio type estimator t∗8 if either 1 < α1 < 2kyx and 1 < α1 < 2kyx(2),

or 2kyx < α1 < 1 and 2kyx(2) < α1 < 1,
(7.9)

v) the exponential product type estimator t∗9 if either 0 < α1 <
(
1 + 2kyx

)
and 0 < α1 <

(
1 + 2kyx(2)

)
,

or
(
1 + 2kyx

)
< α1 < 0 and

(
1 + 2kyx(2)

)
< α1 < 0.

(7.10)

The proposed class of ratio product estimator t∗10 is more efficient than ȳ∗, t∗6, t∗7, t∗8 and t∗9 respectively,
if (7.6), (7.7), (7.8), (7.9) and (7.10) respectively hold true.

8. Empirical Study

To look closely the excellence of the suggested estimators, we consider the following data set:
Source: Khare and Srivastava (1995, p.201).

The population of 100 consecutive trips (after leaving 20 outlier values) measured by two fuel
meters for a small family car in normal usage given by Lewisi et al. (1991) has been taken into
consideration. The measurements of turbine meter (in ml.) is considered as main variable y and the
measurements of displacement meter (in cm3) is considered as auxiliary variable x. We treat 25% last
values as non-response units. The values of the parameters are as follows:

Ȳ = 3500.12, X̄ = 260.84, Cy = 0.5941, Cx = 0.5996, Ȳ2 = 3401.08, X̄2 = 259.96,
Cy(2) = 0.5075, Cx(2) = 0.5168, ρyx = 0.985, ρyx(2) = 0.995, W2 = 0.25,
kyx = 0.9759, kyx(2) = 0.9771, R = 13.4187, N = 100, n = 30, n′ = 50.

Here, we have calculated the percent relative efficiencies(PRE’s) of different suggested estimators
with respect to usual unbiased estimator ȳ∗ for different values of k by using the following formulae

PRE
(
t∗i , ȳ

∗) = Var (ȳ∗)
MSE (∗) × 100; i = 6, 7, 8, 9 and 10(opt).

Table 2 exhibits that the PRE’s of estimators t∗6, t∗9 and t∗10(opt) decreases as the value of k increases,
while the PRE’s of estimators t∗7 and t∗8 decreases as the value of k increases. Further, it is to be noted
that the estimator t∗10(opt) is the best among ȳ∗, t∗6, t∗7, t∗8 and t∗9. Thus, the suggested estimator t∗10(opt) is
to be recommended for its use in practice.
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Table 2: Percent relative efficiency of the different estimators of Ȳ with respect to ȳ∗.

PRE ( · , ȳ∗) (1/k)
(1/5) (1/4) (1/3) (1/2)

PRE
(
t∗6, ȳ

∗
)

439.59 385.97 331.72 276.81
PRE

(
t∗7, ȳ

∗
)

29.82 30.66 31.87 33.75
PRE

(
t∗8, ȳ

∗
)

146.25 149.49 154.08 161.05
PRE

(
t∗9, ȳ

∗
)

66.44 65.24 63.69 61.64
PRE

(
t∗10(opt), ȳ

∗
)

440.53 386.68 332.22 277.15

9. Conclusion

The present article considers the problem for estimating the finite population mean Ȳ of the study
variable y in presence of non-response in different situations viz. (i) population mean X̄ is known, and
(ii) population mean X̄ is unknown. Using the Hansen and Hurwitz (1946) procedure of sub-sampling
the non-respondents for both the cases where the population mean of the auxiliary character is known
and not known in advance, an ratio-product type estimator respectively have been proposed and their
properties are studied. The optimum mean squared error’s(MSE’s) of the proposed estimators are
also obtained. The relative performance of the proposed estimators is compared with the conventional
estimators. The proposed estimators are efficient and should work very well in practical surveys.
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