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Abstract
This study proposes a modified definition about Cpk based on median as the centering parameter in order

to more easily control the process since the mean does not represent any quantile of the asymmetric process
distribution. Then we consider an estimate and derive the asymptotic normality for the estimate of the modified
Cpk. In addition, we provide an example with asymmetric distributions and discuss the estimation for the limiting
variance that are followed by some concluding remarks.
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1. Introduction

It is an important issue for manufacturers to assess product quality and whether the product satis-
fies the given specification limits that achieves the target value since consumers or end-users require
stronger product quality guarantees. Manufacturers should increase efforts to keep the production
process stable and reduce the variability within the specification limits to maintain the production
quality. As a methodology for measuring and assessing the ability of the production process, process
capability indices(PCIs) have been defined in theory and successfully applied on the floor to maintain
and enhance the product quality. Since Juran (1974) introduced the PCI in the quality control, the
definition of PCI has been expanded in time and in order to accommodate various situations and en-
vironments on the floor. Among them, Cp and Cpk are the most popular and widely used definitions
of PCI, which will be presented in the following section. For this, let LSL and USL be the upper and
lower specification limits, respectively. In addition let µ and σ2 (or σ) be the mean and variance(or
standard deviation) of the production process, respectively. Then Cp and Cpk are defined as

Cp =
USL − LSL

6σ
and Cpk =

min{µ − LSL,USL − µ}
3σ

.

Cp is the simplest definition among those of PCI and can be used for the symmetric distributions
when the process mean µ is the centering point between USL and LSL. Cpk can be used for the
symmetric distributions when µ is not the centering point between USL and LSL or for the asymmetric
or skewed distributions. However we note that the process mean µ is also used for the centering
parameter in the definition of Cpk. Since the mean µ may not be used to represent any quantile point
of the process distribution, the meaning of the two intervals, (LSL, µ) and (µ,USL) may become
more or less ambiguous when the distribution is asymmetric. Instead if we use median θ in this
case, then the meaning of (LSL, θ) and (θ,USL) would be more sensible since median θ stands for
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50% point of the process distribution. Then this may help the managers working for the quality
control identify the state of process whether the process can be controlled easily or not since they
can understand the probability concerning the interval (LSL, θ) or (θ,USL). For this reason, it would
be convenient to assess and control the production process using a modified Cpk based on median
θ. In addition, we note that many statisticians and engineers agree that it is common to encounter
data with a heavy-tailed or skewed distribution on the floor (cf. Gunter, 1989). Even for the case of
Cp, when we make inference, sometimes we may not assume normality even though the symmetry
is assumed for the process distribution. In this case, it would be better to consider applying the
nonparametric method for the inference based on median for the location parameter. In this vein, Park
(2009) proposed the control charts based on median and obtained control limits using the bootstrap
method (cf. Efron, 1979) that has been widely used in nonparametric statistics for the computational
methodology; however, there have been no known reports about a PCI which is based on median.

This research proposes a modified definition Cpk(θ) of Cpk based on the median to consider its
estimation and derive asymptotic normality in the next section. Then we provide an example to
compare the behavior of Cpk and Cpk(θ) using the asymmetric distributions and discuss an estimation
procedure for the limiting variance of the asymptotic normality. Finally we comment on applying the
bootstrap method as a re-sampling method for the estimation of the limiting variance.

2. Definition, Estimate and Asymptotic Normality for CCCpk(θ)

We first propose a modified definition of Cpk(θ) based on a process median θ as follows.

Cpk(θ) =
min{θ − LSL,USL − θ}

3σ
.

In order to estimate Cpk(θ), suppose that we have a sample X1, . . . , Xn from the production process
having a continuous but unknown distribution function F with a median θ. We assume that F may
have the finite fourth moment for the technical reason of our discussion for the asymptotic normality.
From the sample X1, . . . , Xn, let θ̂ be the [n/2]+1st order statistic, where [x] denotes the largest integer
part of the real number x. We note that θ̂ is a sample median and a consistent estimate of θ. In addition,
let s2 be the unbiased estimate of σ2 such that

s2 =
1

n − 1

n∑
i=1

(
Xi − X̄

)2
.

Then one may propose an estimate Ĉpk(θ) of Cpk(θ) simply as follows:

Ĉpk(θ) =
min

{
θ̂ − LSL,USL − θ̂

}
3s

.

It is obvious that Ĉpk(θ) is a consistent estimate of Cpk(θ) since θ̂ and s are consistent estimates of θ
and σ, respectively. For the inference on Cpk(θ) such as confidence interval and/or hypothesis testing,
one has to obtain the distribution of Ĉpk(θ). Since the exact distribution of Ĉpk(θ) is too complicated
to be derived, we consider the asymptotic normality of

√
n(Ĉpk(θ) − Cpk(θ)) instead. The asymptotic

normalities for Ĉpk based on the sample mean, has been considered by Chan et al. (1990) and Chen
and Pearn (1997) under some conditions. Now we state the results for the asymptotic normality in the
following Theorem.
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Theorem 1. With the assumption that F has the finite fourth moment, we have that

√
n
(
Ĉpk(θ) −Cpk(θ)

)
converges in distribution to a normal random variable with mean 0 and variance V(Cpk(θ)) such as

(i) if min{θ − LSL,USL − θ} = θ − LSL

V
(
Cpk(θ)

)
=

1
9σ4

{
σ2

4 f 2(θ)
+

(θ − LSL)2(µ4 − σ4)
4σ2 − 2σ(θ − LSL)ρθσ

}
.

(ii) if min{θ − LSL,USL − θ} = USL − θ

V
(
Cpk(θ)

)
=

1
9σ4

{
σ2

4 f 2(θ)
+

(USL − θ)2(µ4 − σ4)
4σ2 + 2σ(USL − θ)ρθσ

}
,

where

ρθσ = −
1

4σ f (θ)

{
2
∫ θ

−∞
x2dF(x) −

(
σ2 − µ2

)
− 4µ

∫ θ

−∞
xdF(x)

}
.

Proof: Before we proceed to prove the asymptotic normality, we first note that one may prove that θ̂
converges with probability one(w.p.1) to θ using Lemma which follows in the sequel, with Slutsky’s
Theorem. This in turn implies that θ̂ − LSL converges w.p.1 to θ − LSL for the case (i) min{θ −
LSL,USL − θ} = θ − LSL. Therefore even though min{θ − LSL,USL − θ} = θ − LSL does not
guarantee that

min
{
θ̂ − LSL,USL − θ̂

}
= θ̂ − LSL (2.1)

for some finite numbers of n, eventually (2.1) will hold for sufficiently large n and thereafter. Therefore
it would be enough to consider the asymptotic normality for the case (i) that

√
n
(
Ĉpk(θ) −Cpk(θ)

)
=
√

n

min
{
θ̂ − LSL,USL − θ̂

}
3s

− min {θ − LSL,USL − θ}
3σ


=
√

n
(
θ̂ − LSL

3s
− θ − LSL

3σ

)

=

√
n

3

σ
(
θ̂ − θ

)
− (s − σ)(θ − LSL)

σs

 .
Then we need the results of the asymptotic normalities for

√
n
(
θ̂ − θ

)
and

√
n(s − σ)

and the limiting form ρθσ of n Cov(θ̂ − θ, s − σ), the covariance between
√

n(θ̂ − θ) and
√

n(s − σ).
In order to derive the asymptotic normality for

√
n(θ̂ − θ), we will apply the Bahadur Representation
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Theorem (cf. Serfling, 1980), which will be stated in the following lemma. For this, let Fn be the
empirical distribution function and defined using the indicator function I(·) as

Fn(x) =
1
n

n∑
i=1

I(Xi ≤ x).

We note that Fn is a strongly consistent estimate of F. In the following lemma, we denote f as the
probability density function(pdf) of F. In addition, we assume that f (x) > 0 for some neighborhood
of θ. �

Lemma 1. (Bahadur Representation Theorem)
For 0 < p < 1, let ξp be the pth quantile of F. Then F(ξp) = p. Assume that F is twice

differentiable at ξp and F′(ξp) = f (ξp) > 0. Sequence {kn}, 1 ≤ kn ≤ n, with positive integers satisfies
the following: as n→ ∞, for τ ≥ 1/2,

kn

n
= p + o

(
(log n)τ

n
1
2

)
. (2.2)

Then we have w.p.1 that

ξ̂p = ξp +
kn/n − Fn(ξp)

f (ξp)
+ O

(
n−

3
4 (log n)(

1
2 )(τ+1)

)
.

For the proof of Lemma, you may refer to Serfling (1980). For the proof of Theorem using Lemma,
we take ξp = θ and p = 1/2. Also by choosing kn = [2/n] + 1, we see that kn/n = 1/2 + O(n−1)
that satisfies the condition (2.2) in Lemma. Then using the Central Limit Theorem with Slutsky’s
Theorem, we have that

√
n
(
θ̂ − θ

) d→ N
(
0,

1
(2 f (θ))2

)
, (2.3)

where
d→ means the convergence in distribution.

For the asymptotic normality of
√

n(s−σ), we may use the results of the asymptotic normality of√
n(s2 − σ2) and ∆-method (cf. Bickel and Doksum, 1977). From Serfling (1980, p.114, Problem 8),

we see that

√
n
(
s2 − σ2

) d→ N
(
0, µ4 − σ4

)
,

where µ4 = E{(X − µ)4}. Then taking g(x) =
√

x, since g′(x) = 1/(2
√

x), from the ∆-method, we
obtain that

√
n(s − σ) =

√
n
(
g
(
s2

)
− g

(
σ2

)) d→ N
(
0,
µ4 − σ4

4σ2

)
. (2.4)

Finally we may obtain ρθσ using Slutsky’s Theorem and Lemma as follows:

ρθσ = −
1

4σ f (θ)

{
2
∫ θ

−∞
x2dF(x) −

(
σ2 − µ2

)
− 4µ

∫ θ

−∞
xdF(x)

}
. (2.5)
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Table 1: Comparison of PCI values for Cpk and Cpk(θ)
α Mean Median Variance LSL USL Cpk Cpk(θ)

1/2 2 (log 2)2 20 0.0000 28.0722 0.1491 0.0358
1 1 log 2 1 0.0050 5.2983 0.3317 0.2294
2

√
π/2

√
log 2 1 − π/4 0.7808 2.3018 0.5867 0.5481

The derivation will appear in Appendix. Then using the results, (2.3), (2.4) and (2.5), with the fact
that s is a consistent estimate of σ, we may obtain the asymptotic normality for the case (i).

For the case (ii), using the following equation for sufficiently large enough n

√
n
(
Ĉpk(θ) −Cpk(θ)

)
=

√
n

3

−σ
(
θ̂ − θ

)
− (s − σ)(USL − θ)
σs

 ,
we may obtain the result with the same arguments used for (i).

3. Example and Some Concluding Remarks

In order to provide some comparison between Cpk and Cpk(θ), we consider the following Weibull
distribution family such that for any α > 0

f (x) = αxα−1 exp[−xα], 0 < x < ∞.

We consider three cases by varying the value of α such as 1/2, 1 and 2. We choose w0.005 and w0.995
for LSL and USL for each case, where wp is the pth quantile point. We summarized all the relevant
quantities in Table 1 with the values of Cpk and Cpk(θ) for each case. You may refer to Randles and
Wolfe (1979) for the means and variances of Weibull distributions. The table shows that the difference
between Cpk and Cpk(θ) becomes smaller as α increases. This may happen since the differences
between the means and medians become smaller as α increases. We note that the shape of the pdfs
moves toward symmetry as α increases. In addition, we note that all the values of Cpk(θ) are smaller
than those of Cpk. Therefore, when the underlying distribution is not symmetric, we have to pay more
attention to the production process to maintain the quality level and Cpk(θ) can take the role better than
Cpk for this end since Cpk(θ) is more sensitive for the change of asymmetry of the process distribution.

The applications of median as a location parameter to the industrial field have rarely been studied
and reported even though there may exist some merits such that the normality for the process dis-
tribution is not required. This may come from the facts that the researches for the mean have been
widely studied and the results are relatively simple and easy to apply whereas those for median are
rare and even complicated with especially the derivation of the asymptotic normality. However the
mean may become less meaningful and can provide distorted information as a location parameter
when the asymmetry gets severe. In addition, we note that the product quality may be controlled by
some criteria with probability such as the control limits for the control charts. Therefore the use of
median should be considered seriously for the asymmetric process distribution.

For the statistical inferences such as confidence interval and testing hypotheses for Cpk(θ) using
the asymptotic normality, we have to obtain a consistent estimate of the limiting variance V(Cpk(θ).
For this, first of all, we have to estimate f (θ). Then from Serfling (1980), for any suitable positive real
number bn, we may have

fn
(
θ̂
)
=

Fn

(
θ̂ + bn

)
− Fn

(
θ̂ − bn

)
2bn

,
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as an estimate of f (θ). Serfling (1980) summarized extensively the asymptotic properties of the den-
sity estimation that can be used as criteria for the choice of value of bn. In addition, we may obtain
consistent estimates of ∫ θ

−∞
xdF(x) and

∫ θ

−∞
x2dF(x)

by ∫ θ̂

−∞
xdFn(x) =

1
n

n∑
i=1

XiI
(
Xi ≤ θ̂

)
and

∫ θ̂

−∞
x2dFn(x) =

1
n

n∑
i=1

XiI
(
X2

i ≤ θ̂
)
.

Then using the plug-in method, we may obtain a consistent estimate of the limiting variance V(Cpk(θ)
together with s2 and θ̂.

As a matter of fact, the expressions of the limiting variance V(Cpk(θ) in Theorem are very messy
to be estimated. Therefore if one considers to make inferences with the estimated variance proposed
as in the previous paragraph, then one may confront the problems of the efficiency and accuracy for
the result of the analysis. One statistical method to avoid this situation may be to use the bootstrap
method. Franklin and Wasserman (1992) considered to apply the bootstrap method for obtaining the
confidence intervals with several versions of bootstrap methods (cf. Efron and Tibshirani, 1993; Shao
and Tu, 1995) for Cp and Cpk in this regard. Also Cho et al. (1999) considered to use the bootstrap
method in this direction. We may compare the efficiency between the plug-in and bootstrap methods
by obtaining the coverage probabilities of the confidence intervals through simulation study. This will
be one of our research topics in the future and appear in a suitable journal.

Appendix:

In this appendix, we derive the limiting form ρθσ of nCov(θ̂ − θ, s − σ). Then it is enough to derive
the limiting form of nE[(θ̂ − θ)(s − σ)]. For this, first of all, we note that

n
(
θ̂ − θ

)
(s − σ) = n

(
θ̂ − θ

) (
s2 − σ2

)
s + σ

.

If we apply Lemma again, then we have w.p.1 that

n

(
θ̂ − θ

) (
s2 − σ2

)
s + σ

= n
{1/2 − Fn(θ)} + O

(
n−3/4(log n)(1/2)(τ+1)

)
(s + σ) f (θ)

(
s2 − σ2

)
= n

1/n
∑n

i=1 {1/2 − I(Xi ≤ θ)} + O
(
n−3/4(log n)(1/2)(τ+1)

)
(s + σ) f (θ)

(
s2 − σ2

)
. (A.1)

Since s is an unbiased estimate of σ, it is enough to consider the numerator of (A.1). Then the right-
hand side of the numerator of (A.1) can be re-arranged as

n∑
i=1

{
1
2
− I(Xi ≤ θ)

} (
s2 − σ2

)
+ nKn

(
s2 − σ2

)
=

n∑
i=1

{
1
2
− I(Xi ≤ θ)

}
s2 −

n∑
i=1

{
1
2
− I(Xi ≤ θ)

}
σ2 + nKn

(
s2 − σ2

)
,
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where Kn = O(n−3/4(log n)(1/2)(τ+1)). Since s2 is an unbiased estimate of σ2 and Kn is a quantity which
is not related with s2,

nE
{
Kn

(
s2 − σ2

)}
= nKnE

(
s2 − σ2

)
= 0.

Now for each i, since E {I(Xi ≤ θ)} = F(θ) = 1/2, also we have that

E

 n∑
i=1

{
1
2
− I(Xi ≤ θ)

}
σ2

 = σ2
n∑

i=1

E
{

1
2
− I(Xi ≤ θ)

}
= 0.

Therefore it is enough to consider that

E

 n∑
i=1

{
1
2
− I(Xi ≤ θ)

}
s2

 = n
2

E
(
s2

)
− E

 n∑
i=1

I(Xi ≤ θ)s2


=

n
2
σ2 − E

 n∑
i=1

I(Xi ≤ θ)s2

 .
In addition, we note that

n∑
i=1

I(Xi ≤ θ)s2 =
1

n − 1

 n∑
i=1

I(Xi ≤ θ)

 n∑

i=1

X2
i − nX̄2


=

1
n − 1

 n∑
i=1

I(Xi ≤ θ)

n − 1

n

n∑
i=1

X2
i −

1
n

∑∑
i, j

XiX j


=

1
n

 n∑
i=1

I(Xi ≤ θ)

 n∑

i=1

X2
i

 − 1
n(n − 1)

 n∑
i=1

I(Xi ≤ θ)

∑∑

i, j

XiX j


= P1 − P2, say.

Then for P1, we have that

P1 =
1
n

n∑
i=1

I(Xi ≤ θ)X2
i +

1
n

∑∑
i, j

I(Xi ≤ θ)X2
j .

For each i, we have

E

 n∑
i=1

I(Xi ≤ θ)X2
i

 =
∫ θ

−∞
x2dF(x)

In addition, we have that since Xi and X j are independent for i , j

E
{
I(Xi ≤ θ)X2

j

}
= E {I(Xi ≤ θ)} E

(
X2

j

)
=
σ2 + µ2

2
.

Thus, we have that

E(P1) =
∫ θ

−∞
x2dF(x) + (n − 1)

σ2 + µ2

2
.
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In addition, n(n − 1)P2 can be rewritten as

n(n − 1)P2 = 2
∑∑

i, j

I(Xi ≤ θ)XiX j +
∑∑ ∑

i, j,k

I(Xk ≤ θ)XiX j.

Since

E
{
I(Xi ≤ θ)XiX j

}
= E {I(Xi ≤ θ)Xi} E(X j) = µ

∫ θ

−∞
xdF(x)

and

E
{
I(Xk ≤ θ)XiX j

}
= E {I(Xk ≤ θ)} E(Xi)E(X j) =

µ2

2
,

we have that

E(P2) = 2µ
∫ θ

−∞
xdF(x) + (n − 2)

µ2

2
.

Thus, we have that

E

 n∑
i=1

{
1
2
− I(Xi ≤ θ)

}
s2

 = n
2
σ2 − E(P1) + E(P2)

= −
∫ θ

−∞
x2dF(x) +

σ2 − µ2

2
+ 2µ

∫ θ

−∞
xdF(x).

Finally we obtain the expression of ρθσ in (2.1) with the fact that s is a consistent estimate of σ.
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