DOI QR코드

DOI QR Code

Differential Sandwich Theorem for Multivalent Meromorphic Functions associated with the Liu-Srivastava Operator

  • Ali, Rosihan M. (School of Mathematical Sciences, Universiti Sains Malaysia) ;
  • Chandrashekar, R. (School of Mathematical Sciences, Universiti Sains Malaysia) ;
  • Lee, See-Keong (School of Mathematical Sciences, Universiti Sains Malaysia) ;
  • Swaminathan, A. (Department of Mathematics, Indian Institute of Technology) ;
  • Ravichandran, V. (Department of Mathematics, University of Delhi)
  • Received : 2010.07.19
  • Accepted : 2011.01.20
  • Published : 2011.06.30

Abstract

Differential subordination and superordination results are obtained for multivalent meromorphic functions associated with the Liu-Srivastava linear operator in the punctured unit disk. These results are derived by investigating appropriate classes of admissible functions. Sandwich-type results are also obtained.

Keywords

References

  1. R. Aghalary, R. M. Ali, S. B. Joshi and V. Ravichandran, Inequalities for analytic functions defined by certain linear operator, Internat. J. Math. Sci., 4(2005), 267-274. https://doi.org/10.1142/9789812701039_0009
  2. R. Aghalary, S. B. Joshi, R. N. Mohapatra and V. Ravichandran, Subordinations for analytic functions defined by the Dziok-Srivastava linear operator, Appl. Math. Comput., 187(2007), 13-19. https://doi.org/10.1016/j.amc.2006.08.097
  3. R. M. Ali, R. Chandrashekar, S. K. Lee, A. Swaminathan and V. Ravichandran, Differential sandwich theorem for multivalent analytic functions associated with the Dziok-Srivastava operator, Tamsui Oxf. J. Math. Sc., to appear.
  4. R. M. Ali and V. Ravichandran, Differential subordination for meromorphic functions defined by a linear operator, J. Anal. Appl. 2(2004), 149-158.
  5. R. M. Ali, V. Ravichandran and N. Seenivasagan, Differential subordination and superordination of analytic functions defined by the Dziok-Srivastava linear operator, Journal of Franklin Institute, to appear.
  6. R. M. Ali, V. Ravichandran and N. Seenivasagan, Differential subordination and superordination of analytic functions de ned by the multiplier transformation, Math. Inequal. Appl., 12(2009), 123-139.
  7. R. M. Ali, V. Ravichandran and N. Seenivasagan, Differential subordination and su-perordination for meromorphic functions de ned by certain multiplier transformation, Bull. Malaysian Math. Sci. Soc., 33(2010), 311-324.
  8. R. M. Ali, V. Ravichandran and N. Seenivasagan, Subordination and superordination on Schwarzian derivatives, J. Inequal. Appl., 2008, Article ID 712328, 1-18.
  9. R. M. Ali, V. Ravichandran and N. Seenivasagan, Subordination and superordina- tion of the Liu-Srivastava linear operator on meromorphic functions, Bull. Malaysian Math. Sci. Soc., 31(2008), 193-207.
  10. M. K. Aouf and H. M. Hossen, New criteria for meromorphic p-valent starlike func- tions, Tsukuba J. Math., 17(1993), 481-486. https://doi.org/10.21099/tkbjm/1496162274
  11. N. E. Cho and I. H. Kim, Inclusion properties of certain classes of meromorphic func- tions associated with the generalized hypergeometric function, Appl. Math. Comput., 187(2007), 115-121. https://doi.org/10.1016/j.amc.2006.08.109
  12. J. Dziok and H. M. Srivastava, Classes of analytic functions associated with the gen- eralized hypergeometric function, Appl. Math. Comput., 103(1999), 1-13. https://doi.org/10.1016/S0377-0427(98)00235-0
  13. Y. C. Kim and H. M. Srivastava, Inequalities involving certain families of integral and convolution operators, Math. Inequal. Appl., 7(2004), 227-234.
  14. J-L. Liu, A linear operator and its applications on meromorphic p-valent functions, Bull. Inst. Math. Acad. Sinica, 31(2003), 23-32.
  15. J-L. Liu and S. Owa, On certain meromorphic p-valent functions, Taiwanese J. Math., 2(1998), 107-110. https://doi.org/10.11650/twjm/1500406898
  16. J-L. Liu and H. M. Srivastava, A linear operator and associated families of meromor- phically multivalent functions, J. Math. Anal. Appl., 259(2001), 566-581. https://doi.org/10.1006/jmaa.2000.7430
  17. J-L. Liu and H. M. Srivastava, Classes of meromorphically multivalent functions associated with the generalized hypergeometric function, Math. Comput. Modelling, 39(2004), 21-34. https://doi.org/10.1016/S0895-7177(04)90503-1
  18. J-L. Liu and H. M. Srivastava, Subclasses of meromorphically multivalent functions associated with a certain linear operator, Math. Comput. Modelling, 39(2004), 35-44. https://doi.org/10.1016/S0895-7177(04)90504-3
  19. S. S. Miller and P. T. Mocanu, Differential Subordinations, Dekker, New York, 2000.
  20. S. S. Miller and P. T. Mocanu, Subordinants of differential superordinations, Complex Variables Theory Appl., 48(2003), 815-826. https://doi.org/10.1080/02781070310001599322
  21. S. Owa and H. M. Srivastava, Univalent and starlike generalized hypergeometric functions, Canad. J. Math., 39(1987), 1057-1077. https://doi.org/10.4153/CJM-1987-054-3
  22. R. K. Raina and H. M. Srivastava, A new class of meromorphically multivalent func- tions with applications to generalized hypergeometric functions, Math. Comput. Mod- elling, 43(2006), 350-356. https://doi.org/10.1016/j.mcm.2005.09.031
  23. H. M. Srivastava and J. Patel, Some subclasses of multivalent functions involving a certain linear operator, J. Math. Anal. Appl., 310(2005), 209-228. https://doi.org/10.1016/j.jmaa.2005.02.003
  24. H. M. Srivastava, D.-G. Yang and N-E. Xu, Subordinations for multivalent analytic functions associated with the Dziok-Srivastava operator, Integral Transforms Spec. Funct., 20(2009), 581-606. https://doi.org/10.1080/10652460902723655
  25. B. A. Uralegaddi and C. Somanatha, New criteria for meromorphic starlike univalent functions, Bull. Austral. Math. Soc., 43(1991), 137-140. https://doi.org/10.1017/S0004972700028859
  26. D. Yang, On a class of meromorphic starlike multivalent functions, Bull. Inst. Math. Acad. Sinica, 24(1996), 151-157.
  27. D. Yang, Certain convolution operators for meromorphic functions, Southeast Asian Bull. Math., 25(2001), 175-186. https://doi.org/10.1007/s10012-001-0175-1

Cited by

  1. Differential Subordination and Superordination for Srivastava-Attiya Operator vol.2011, 2011, https://doi.org/10.1155/2011/902830