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Abstract. Given a knot diagram D, we construct a semi-threading circle of it which can

be an axis of D as a closed braid depending on knot diagrams. In particular, we consider

semi-threading circles of minimal diagrams of a knot with respect to overpasses which give

us some information related to the braid index. By this notion, we try to give another

proof of the fact that, for every nontrivial knot K, the braid index b(K) of K is not less

than the minimum number l(K) of overpasses of diagrams. Also, they are the same for a

torus knot.

1. Introduction

Throughout this paper, every knot is oriented and lies in the 3-dimensional
sphere S3. Also, all knots are isotopic to polygonal or smooth knots, i.e., they are
tame. Therefore, each knot has a diagram with finitely many crossings, hence, has
a finite number of overpasses. A diagram D of a knot K is a popular representative
of the isotopy class of K which is also called the knot type of K. D is obtained
from a regular projection P of K by the following steps. First, we take a suffi-
ciently small neighborhood of each double point of P so that the intersection of
the neighborhood and P looks like an ‘X-shape’ on the plane. Second, we adjust
the interior of each neighborhood so that we have a knot D which is isotopic to K
and regularly projected to P . In this sense, a knot diagram is an ‘almost planar’
knot, i.e., it lies in the plane except for a small neighborhood of each double point
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of the regular projection. It has been found various diagrams of knot types whose
numbers of crossings are minimal. Here, we prefer the number of overpasses of a
knot diagram and are interested in knot diagrams whose numbers of overpasses are
minimal. This gives us another point of view to consider knot diagrams. Notice that
the minimal number of overpasses of a knot is the classical bridge number and first
studied by Schubert in [7], where the effects of various operations on knots (satel-
lite, cabling, connected sum) on this number were investigated. We refer to [1] for
further study. The first author investigated the relationships between the number
of crossings and the number of overpasses of a knot diagram. It turns out that the
number of overpasses is estimated by that of crossings if the knot diagram has a
minimal number of crossings [3]. On the other hand, we define a ‘semi-threading’
of an oriented knot diagram and mainly consider ‘minimal semi-threading’ based
on our definition. Since we can isotope the given closed n-braid to a diagram of
n-bridges, the braid index of a nontrivial knot is not less than the minimum num-
ber of overpasses of its diagrams. This fact suggests important information about
minimal knot diagram with respect to overpasses. In particular, the braid index of
each torus knot is the same as the minimum number of overpasses of its diagrams.
In such a case, the semi-threading circle is just a threading. For a ‘threading’ of a
knot in detail, we refer to the celebrated work of H. Morton’s [5].

The outline of this paper is as follows. First, we provide precise definitions of
string surfaces and string indexes in Section 2. In section 3, we provide precise
definitions of semi-threading and show the existence of semi-threading. Then we
find some the relation between bridge number, crossing number and braid index of
knots. By our own definition of semi-threading, we show the fact that, for every
nontrivial knot K, the braid index b(K) of K is not less than the minimum number
l(K) of overpasses of diagrams. Moreover, they are the same for a torus knot. In
section 4, we explain how to get an isotopic closed braid from our threading of a
knot diagram.

2. Minimal crossings and minimal overpasses of knot type

Given a knot diagram D, the number of crossings or the crossing number of
D is denoted by c(D). For each knot K, we call min{c(D) | D is a diagram of
K} the crossing number of K denoted by c(K). Note that we may assume a knot
diagram D lies in the plane by indicating ‘overcrossings’ and ‘undercrossings’. A
‘crossing’, in this sense, of a knot diagram D means a ‘signed double point’ of the
regular projection of D. Hence, c(D) is the number of all double points of the
regular projection of D. On the other hand, we may regard a crossing of D as the
pair of two points overcrossing and undercrossing in D which are projected to the
same double point. That is, a crossing is considered as the pre-image of a double
point under the projection map.

Proposition 2.1. Let D be a knot diagram. Then there are a unique nonnegative
integer k and a finite sequence s1, f1, s2, f2, . . . , sk, fk of 2k points of D which are
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Figure 1. Overpasses and underpasses of a knot diagram.

neither overcrossings nor undercrossings of D such that

[s1, f1], [s2, f2], . . . , [sk−1, fk−1], [sk, fk]

and
[f1, s2], [f2, s3], . . . , [fk−1, sk], [fk, s1]

are the overpasses and the underpasses of D with respect to the sequence, respec-
tively, where [si, fi], for each i ∈ {1, . . . , k}, is the closed arc of D from si to fi which
contains at least one overcrossing but has no undercrossing; similarly, [fi, si+1], for
each i ∈ {1, . . . , k − 1}, is the closed arc of D from fi to si+1 which contains at
least one undercrossing but has no overcrossing; also, the last one [fk, s1] is the
closed arc of D from fk to s1 which contains at least one undercrossing but has no
overcrossing.

In Proposition 2.1, such a sequence s1, f1, s2, f2, . . . , sk, fk is called an over-
underpass sequence of D. Since any over-underpass sequence of D consists of
2k points, the number of overpasses (or underpasses) with respect to any over-
underpass sequence of D is k. Hence, we can define the number of overpasses (or
underpasses) of the knot diagram D as k, and denote it by l(D), called the length
of over-underpass sequences or the bridge number of D. Also, for each knot K, we
call min{l(D) | D is a diagram of K} the bridge number of K denoted by l(K).

Notice that c(D) and l(D) are planar isotopy invariants of knot diagrams, i.e.,
if D1 and D2 are planar isotopic knot diagrams, then c(D1) = c(D2) and l(D1) =
l(D2) and further more c(K) and l(K) are isotopy invariants of knots, i.e., if K1

and K2 are isotopic, then c(K1) = c(K2) and l(K1) = l(K2).

Corollary 2.2. If l(D) ≤ 1, then D is a diagram of a trivial knot. Therefore, a
knot K is trivial if and only if K has a diagram D with l(D) ≤ 1.

Obviously, the converse is not true in general. A diagram of a double twisted
circle can be a counterexample. Similarly, for any positive integer k, there is a
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diagram of the trivial knot for which the number of overpasses is greater than k.
On the other hand, for a given knot diagram D with at least one crossing, we can
add crossings to D as many as we want without changing the knot type and the
number of overpasses of D. Take a sufficiently small arc of D from s1 to a point
between s1 and the first overcrossing of D from s1 and twist it alternatingly so that
the number of overpasses of D is not changed. Or we may modify the interior of
a sufficiently small neighborhood of a crossing of D. Hence, we have the following
corollary.

Corollary 2.3. If D is a diagram of a knot K such that c(D) ≥ 1, then for
every positive integer n, there is a diagram D′ of K such that l(D′) = l(D) and
c(D′) ≥ c(D) + n.

Lemma 2.4. l(D) ≤ c(D) for any knot diagram D. The equality holds if D is an
alternating knot diagram. Furthermore, l(K) ≤ c(K) for any knot K.

Remark that, since the number of double points of D is finite and we have an
ε-neighborhood of D for a sufficiently small ε which is the regular projection of a
knotted solid torus whose axis is the knot diagram D, we can always take such an
ε and such ε-neighborhoods as described the above.

The following theorem provides us a relationship between the numbers of cross-
ings and overpasses.

Theorem 3.2.5([3]). If D is a minimal diagram of a nontrivial knot K with respect
to crossings, then 1 +

√
1 + c(D) ≤ l(D) ≤ c(D).

Notice that not every knot K needs to hold 1+
√

1 + c(K) ≤ l(K). The closure
of the braid σ5

1 , where σ1 is the generator of the standard group presentation of the
braid group B2, can be shown as an example for it by the Theorem 3.8 in the next
section. Also, remark that the crossing number of a knot diagram with a minimal
number of overpasses can be arbitrarily large as shown in Corollary 2.2.3.

3. Semi-threading knot diagram and braid index

In this section, we briefly review the definition of threading of a knot diagram.
For details, see [5]. Also, we define a ‘semi-threading’ of a knot diagram. In partic-
ular, we consider the semi-threading of minimal diagrams of a knot with respect to
overpasses.

First, let us remind Alexander braiding theorem and Markov theorem for braids
shortly.

Theorem 3.1([2]). Every link is the closure of a braid, that is, a closed braid.

Theorem 3.1 known as Alexander braiding theorem was first published by J.
W. Alexander in 1923 and allows us to study knots and links using the theory of
braids. The minimum number of braid strands used in the closure is called the braid
index of the link. Note that the closures of different braids need not be distinct. A
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complete answer for the question, when the closures of two different braids are the
same link, is given in the following theorem.

Theorem 3.2([4]). The closures of two braids are isotopic if and only if one braid
can be obtained from the other by a finite sequence of Markov moves: the first
Markov move, α −→ β−1αβ, α, β ∈ Bn is called conjugations, the second Markov
move, α←→ ασ±1n , α ∈ Bn is called (de)stabilizations.

Although braid theory has been a very powerful tool to overcome several hard
questions in knot theory, it never be able to completely classify the knots and links
because of the lack of control on the second Markov move. We review the original
definition of threading and semi-threading.

Definition 3.3([5]). Let K be a knot, T a trivial knot, and K t T an oriented
link in S3 whose components are only K and T and the linking number lk(K,T ) is
positive. The link K tT is said to be braided if there are isotopic diagrams K ′, T ′,
K ′ tT ′ of K, T , K tT , respectively, such that K ′ is a closed braid, i.e, a closure of
a braid, and T ′ is an axis of K ′, which is called a threading circle of K ′. The link
diagram K ′ t T ′ is called a threading of K ′.

By the definition of a threading circle of a knot diagram, we easily know that,
for each knot K, the braid index b(K) is the same as min{lk(D,L) | D is a diagram
of K and L is a threading circle of D}. Notice that b(K) is an isotopy invariant of
knots.

Actually, a threading circle of a knot diagram is an axis of the knot as a closed
braid. We define a ‘weaker threading’ as follows.

Definition 3.4. Let D be a diagram of a knot. An oriented simple closed curve L
on the plane is called a semi-threading circle of D if L crosses all overpasses of D
transversely exactly once so that the linking number lk(D,L) of D and L is positive.
We call such a link D t L a semi-threading of D.

Now we construct a semi-threading circle of a knot diagram which might be an
axis of D as a closed braid depending on knot diagrams. However, a threading circle
of a knot diagram need not be a semi-threading circle of it because a semi-threading
circle requires all the overpasses.

Theorem 3.5. A semi-threading circle L of a knot diagram D exists.

Proof. If D is a diagram of a trivial knot with no crossing, we can draw an oriented
simple closed curve L on the plane so that D t L is a diagram of a positive Hopf
link, a two component link whose components are trivial and linking number is 1.
Obviously, L is a semi-threading circle of D.

Suppose l(D) = k ≥ 2 and s1, f1, s2, f2, . . . , sk, fk is an over-underpass sequence
of D. By a plane isotopy, we can arrange all overpasses [s1, f1], [s2, f2], . . . , [sk, fk]
to be vertical downward and from left to right in turn by a permutation σ of k.
That is, we have k vertical overpasses [sσ(1), fσ(1)], [sσ(2), fσ(2)], . . . , [sk, fσ(k)] from
left to right.
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Figure 2. A semi-threading of a knot diagram D.

Note that any permutation of k can be used to array the overpasses such a way.
However, we want to use one which makes the underpasses as possible as simpler.
It is naturally determined by the shape of diagram.

Now let us construct a simple closed curve L on the plane to be a semi-threading
circle of D. For each i ∈ {1, . . . , k}, choose a point xi on (sσ(i), fσ(i)) which is not
a crossing of D, where (sσ(i), fσ(i)) = [sσ(i), fσ(i)]−{sσ(i), fσ(i)}. Take a sufficiently
small circular closed neighborhood of xi in the plane so that the intersection of the
neighborhood and D is a closed arc contained in (sσ(i), fσ(i)) which has no crossing
of D. Choose two points x′i and x′′i on the boundary of the neighborhood so that
the line segment [x′i, x

′′
i ] is perpendicular to [sσ(i), fσ(i)] and passes through xi from

left to right. Draw the straight line li from x′′i to x′i+1 for each i ∈ {1, . . . , k − 1}.
If li tangents D, by a sufficiently small change, we can modify li to a piecewise
straight line which intersects D transversely and does not intersect the overpasses.
We also denote the piecewise straight line by li. By the above construction, we have
a piecewise straight line

L0 = [x′1, x
′′
1 ] ∪ l1 ∪ · · · ∪ [x′k−1, x

′′
k−1] ∪ lk−1 ∪ [x′k, x

′′
k ]

from x′1 to x′′k which intersects D transversely and intersects each overpass exactly
once. Let ε be a sufficiently small positive real number such that

(1) L0 + ε is the parallel transition of L0 by ε along the overpasses;
(2) L0 + ε does not pass through any crossings of D;
(3) L0 + ε intersects D transversely;
(4) there is no crossing of D between L0 and L0 + ε;
(5) each of the vertical line segments [x′1, x

′
1+ε] and [x′′k , x

′′
k+ε] does not intersect

D. Now we get a piecewise straight line l′k from x′′k to x′1 as

l′k = [x′1, x
′
1 + ε] ∪ (L0 + ε) ∪ [x′′k , x

′′
k + ε]

and a simple closed curve L0 ∪ l′k on the plane. Let L = L0 ∪ l′k and give the
orientation which agrees with from x′1 to x′′k clockwise.
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As the next step, we give the crossing structures to the intersections of D and
L to make the linking number lk(D,L) positive. For each i ∈ {1, . . . , k}, [x′i, x

′′
i ]

crosses [si, fi] below, and, for each i ∈ {1, . . . , k−1}, li crosses above the underpasses
of D which intersect li. In particular, l′k crosses above at any intersection with D.
Therefore, L is a semi-threading circle of D and the link diagram D t L is a semi-
threading of D. 2

In the proof of Theorem 3.5, such a trivial knot diagram L is unique up to
isotopy and called a minimal semi-threading circle of D, denoted by MD. The
semi-threading D t MD of D is called a minimal semi-threading of D. Remark
that we can construct a semi-threading circle without changing the knot diagram.
In other words, the plane isotopy to make all overpasses vertical downward is not
necessary. It is obvious from the construction of the semi-threading circle in the
proof of Theorem 3.5. Also, we emphasize that a minimal semi-threading circle of
D depends on the choice of a permutation of l(D).

We have already had well-known threadings devised by Morton [5]. They are
also very good examples of threadings. As an advantage of our minimal semi-
threading, it immediately shows the relationship between the number of overpasses
and the linking number of threading as slated in Corollary 3.6.

Corollary 3.6. If D is a knot diagram with l(D) ≥ 1, then l(D) = lk(D,MD).

On the other hand, Morton’s threading depends on the unknotted simple closed
curves and the number of crossings between knot and unknot diagrams, but in his
paper [5], Morton proved valuable theorems on his own threading.

In general, a threading circle of a knot diagram need not require all over-
passes of it. However, each minimal semi-threading of D tMD and the threading
DtMMorton’s for a knot diagram D still require all overpasses of D. For our purpose
on this paper, the notion of minimal semi-threading is necessary as a key fact. The
following lemma is an immediate consequence of the minimal semi-threading of a
knot diagram. Also it plays an important role in the relation between the minimal
number of overpasses and the braid index of a knot type. It may be regarded as
another version of Alexander Braiding Theorem.

Lemma 3.7. If D is a knot diagram and a minimal semi-threading D tMD is not
braided, then there is a threading circle T of D such that lk(D,MD) < lk(D,T ).

Proof. Suppose thatD is a knot diagram and l(D) = k ≥ 2 and s1, f1, s2, f2, . . . , sk, fk
is an over-underpass sequence of D. By Corollary3.6, lk(D,MD) = k. Let us use
L0 in the proof of Theorem 3.5. That is,

L0 = [x′1, x
′′
1 ] ∪ l1 ∪ · · · ∪ [x′k−1, x

′′
k−1] ∪ lk−1 ∪ [x′k, x

′′
k ].

We draw rays lL0
and rL0

starting from x′1 and x′′k leftward and rightward which

extend the line segments x′1, x
′′
1 and x′k, x

′′
k , respectively, and cross above the under-

passes of D which intersect them. Let T0 = lL0
∪L0 ∪ rL0

. We can think of T0 as a
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simple closed curve passing through the infinity ∞ of S3. Hence, D t T0 is isotopic
to D tMD. We call T0 an extended minimal semi-threading circle of D.

Our goal is to modify the extended minimal semi-threading circle T0 to a thread-
ing circle T so that D t T is braided. Note that, for each i ∈ {1, . . . , k}, the i-th
underpass [fi, si+1] or [fk, s1] crosses below T0 an odd times.

Notice that the extended minimal semi-threading DtT0 is a threading, that is,
D t T0 is braided, if each underpass of D crosses below T0 exactly one time.

By hypothesis, D t T0 is not braided, so D has at least one underpass which
crosses T0 below more than one time.

Suppose that 1 ≤ m ≤ k and {u1, . . . , um} is the set of all underpasses of
D each of which crosses T0 below more than one time. For each i ∈ {1, . . . ,m},
there is ni ∈ N such that ui crosses T0 below exactly 2ni + 1 times. Give the
order to 2ni + 1 undercrossings on ui by T0 which agree with the orientation of
D. We do crossing change for all the even numbered undercrossings. That is, ni
times of crossing change occur. Hence, exactly n1 + · · · + nm times of crossing
change occur on T0. Let T be the modified T0. Then D t T is braided with
lk(D,T ) = lk(D,MD) + n1 + · · ·+ nm. This completes the proof of the lemma. 2

Notice that, in the proof of Lemma 3.7, D t MD and D t T are surely not
isotopic. Even though the threading D t T is a diagram of a braided link, it may
have lots of unnecessary strands as a closed braid. These unnecessary strands can
be reduced by a suitable sequence of Markov moves.

Now we show an inequality between the number of minimal overpasses and the
braid index for a nontrivial knot.

Although the following statement is an immediate consequence from the well-
known fact in braid theory that

every closed braid for a nontrivial knot has a diagram whose number of
overpasses(bridges) equals to that of the strands of it,

we try to prove it by our own construction of semi-threading to give another point
of view on the braid index and the number of overpasses. We start from a minimal
knot diagram with respect to overpasses.

Theorem 3.8. If K is a nontrivial knot, then l(K) ≤ b(K).

Proof. Let K be a nontrivial knot, and let D be a minimal diagram of K with
respect to overpasses. That is, l(D) = l(K). Assume that c(D) = min{c(D) | D is
a diagram of K and l(D) = l(K)}. Be careful that c(D) does not mean c(K)!

Since an extended minimal semi-threading circle T0 of D depends on the choice
of a permutation of l(D) and plane isotopy, we can take T0 of D such that the
number of crossings between T0 and all underpasses of D is the minimum.

If D t T0 is braided, then b(K) = lk(D,T0) = l(D), so b(K) = l(D) = l(K).
Suppose that D t T0 is not braided. By Corollary 3.6 and Lemma 3.7, l(K) =
lk(D,T0) < lk(D,T ), where T is such a threading circle of D modified from T0 as
in the proof of Lemma 3.7. Since all unnecessary crossings between the underpasses
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Figure 3. Trefoil knot as a semi-threading.

and T0 can be removed, the threading D t T has no unnecessary strands as closed
braid. Therefore, b(K) = lk(D,T ). This proves the theorem. 2

In general, for a knot K, it is not true that l(K) = b(K). As an example, the
figure 8-knot K has l(K) = 2 but b(K) = 3. Our main concern is what conditions
for a knot K make l(K) = b(K).

By our construction of semi-threading, we can conclude that if a minimal knot
diagram with respect to overpasses has an extended minimal semi-threading circle
of it which crosses over each underpass exactly once, then the semi-threading circle
is just a threading circle and the diagram can be thought of as a closed braid with
braid index, that is, the minimum number of strands.

One of such special classes of knot types is the torus knots. See Figure 3.

Theorem 3.9. If K is a torus knot, then l(K) = b(K).

proof. Suppose that K is a (p, q)-torus knot, where p and q are integers which are
relatively prime. Let D be a standard diagram of K. Without loss of generality,
we may assume that 0 < p < q. Then c(D) = pq − q and l(D) = q. In this case,
c(K) = c(D) and l(K) = p by [6]. By Theorem 3.8, l(K) ≤ b(K). Since K is
a (p, q)-torus knot, K is isotopic to a (q, p)-torus knot K ′. Let D′ be a standard
diagram of K ′. Then c(D′) = pq − p and l(D′) = p. Since the minimum number of
crossings and that of overpasses of the diagrams of a knot are isotopy invariants of
knots, c(K ′) = c(K) = c(D) < c(D′) but l(K) = l(K ′) = l(D′) < l(D).

As illustrated in Figure 3, we can draw an extended minimal semi-threading
circle of the standard diagram D′ of (q, p)-torus knot K ′ which crosses over each
underpass of D′ exactly once. This means that b(D′) = p. Since b(D′) ≥ b(K) ≥
l(K) = p, we have b(K) = l(K). 2

We have observed that the knot diagrams with a minimal number of overpasses
gives a piece of information of the braid index of the knot type. Given a diagram
D of a knot K, if we can remove all unnecessary overpasses of D, the number of
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overpasses will approach the braid index. In general, it is very hard to find l(K)
and b(K) for an arbitrary knot K. Hence, it is very valuable that we know more
exact relationship between l(K) and b(K).

4. Representing threading knot diagram as a closed braid

In this section, we explain how to get an isotopic closed braid from our threading
of a knot diagram.

Consider a threading D t T of a knot diagram D with a threading circle T .
Let s1, f1, s2, f2, . . . , sk, fk be an over-underpass sequence of D. We may assume all
overpasses of D lie in R3

+ = {(x, y, z) ∈ R3 | z > 0} and all underpasses of D are
on the plane, i.e., the xy-plane of R3.

By an isotopy, change the i-th overpass [si, fi] for each i ∈ {1, . . . , k} to the

semi-circle ŝi, fi in R3
+ from si to fi whose projection is that of [si, fi] and T to a

straight line T ′ on the plane which intersects perpendicularly to the projection of
each semi-circle, i.e., we can think of T ′ as a simple closed curve passing through
the infinity ∞ of S3.

Next, we modify the underpasses of D to get the desired knot. Now the plane
contains only T ′ and the underpasses of D. Take a positive real number α and push
down all underpasses of D by α so that they are on the plane z = −α.

For each i ∈ {1, . . . , k−1}, let ui = [fi, si+1]−α and uk = [fk, s1]−α, where ui
is the parallel transition of the i-th underpass by −α, and, for each i ∈ {1, . . . , k},
let lsi and lfi be the vertical line segments from si − α to si and from fi to fi − α,
respectively. Then

(u1 ∪ u2 ∪ · · · ∪ uk) ∪ (ls1 ∪ ls2 ∪ · · · ∪ lsk)

represents a braid. To show this, fix the points f1 − α, . . . , fk − α and lift up ls1 ,
. . . , lsk . Then we can get the braid. Now let K ′ be

(ŝi, fi ∪ · · · ∪ ŝk, fk) ∪ (lf1 ∪ · · · ∪ lfk) ∪ (u1 ∪ · · · ∪ uk) ∪ (ls1 ∪ · · · ∪ lsk).

Then D represents K ′ and D t T also represents K ′ t T ′ as desired.
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[7] H. Schubert, Über eine numerische Knoteninvariante, Math. Z., 61(1954), 245-288.


