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Abstract. We prove a uniqueness theorem for meromorphic functions sharing three

weighted values, which improves a result given by N. Terglane in 1989 and a result given

by X. M. Li and H. X. Yi in 2003. Some examples are provided to show that the result of

the paper is best possible.

1. Introduction, definitions and results

In the paper, by meromorphic functions we shall always mean meromorphic
functions in the open complex plane C. We adopt the standard notations and defi-
nitions of Nevanlinna theory of meromorphic functions as explained in [3, 12]. It is
convenient to let E denote any set of positive real numbers of a finite linear mea-
sure not necessarily the same at each occurrence. For a non-constant meromorphic
function h, we denote by T (r, h) the Nevanlinna characteristic of h and by S(r, h)
any quantity satisfying S(r, h) = o{T (r, h)} as r →∞, r 6∈ E.

Let f and g be two non-constant meromorphic functions and let a ∈ C ∪ {∞}.
We say that f and g share the value a CM, provided that f and g have the same
a-points with the same multiplicities. We say that f and g share the value a IM,
provided that f and g have the same a-points ignoring multiplicities (see [12]).
Throughout the paper, we need the following definitions.

Definition 1.1. A meromorphic function a = a(z) is called a small function of f
if T (r, a) = S(r, f).

Definition 1.2. Let a be a small function of f and g. We denote by N(r, a; f, g)
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the reduced counting function of the common zeros of f − a and g − a.

Definition 1.3. We denote by N(r, a; f, g |≤ 1) the counting function of the
common simple zeros of f − a and g − a for some small function a of f and g.

Definition 1.4. Let f and g share 0, 1, ∞ IM. We denote by N(r) the counting

function of those zeros of f − g which are not the zeros of f(f − 1) and
1

f
.

Definition 1.5. We denote by N0(r, a; f, g) the reduced counting function of the
common zeros of f − a and g − a, where the respective multiplicities are unequal
and a = a(z) is a small function of f and g.

Definition 1.6. Let k be a positive integer and a be a small function of f . We
denote by N(r, a; f |≤ k) (N(r, a; f |≥ k)) the counting function of those zeros of
f − a whose multiplicities are not greater (less) than k.

Also by N(r, a; f |≤ k) and N(r, a; f |≥ k) we denote the corresponding reduced
counting functions.

In 1989, N. Terglane [11] proved the following result.

Theorem A. Let f and g be non-constant meromorphic functions and let a, b, c,

d be four distinct complex numbers such that the cross-ratio (a, b, c, d) ∈ {−1, 2,
1

2
}.

If f and g share b, c, d CM and N(r, a; f, g) 6= S(r, f) then f is a bilinear transfor-
mation of g.

Q. C. Zhang [13] in 1998 worked in the line of Theorem A and proved the
following result.

Theorem B([13]). Let f and g be non-constant meromorphic functions sharing 0 ,
1 and ∞ CM. Suppose additionally that there exists a complex number a( 6= 0, 1,∞)
such that E 1)(a; f) = E 1)(a; g) 6= ∅, where E 1)(a; f) denotes the set of simple a-
points of f and ∅ denotes the empty set. Then f and g satisfy one of the following

relations: (i) f ≡ g, (ii) f + g ≡ 1 with a =
1

2
, (iii) (f − 1)(g − 1) ≡ 1 with a = 2,

(iv) fg ≡ 1 with a = −1.

In 2003, X. M. Li and H. X. Yi [10] considered the problem of removing the

hypothesis (a, b, c, d) ∈ {−1, 2,
1

2
} from Theorem A. They considered the special

case b = 1, c = 0 and d = ∞, as the general case can be treated by a suitable
bilinear transformation. Following is the result of X. M. Li and H. X. Yi.

Theorem B([10]). Let f and g be non-constant meromorphic functions sharing
0, 1 and ∞ CM. Further suppose that there exists a complex number a(6= 0, 1,∞)
such that N(r, a; f, g) 6= S(r, f) . Then f is a bilinear transformation of g, apart
from the following three exceptional cases:
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(i) f =
esγ − 1

e(p+1)γ − 1
, g =

e−sγ − 1

e−(p+1)γ − 1
with 1 ≤ s ≤ p and a =

s

p+ 1
,

(ii) f =
e(p+1)γ − 1

e(p+1−s)γ − 1
, g =

e−(p+1)γ − 1

e−(p+1−s)γ − 1
with 1 ≤ s ≤ p and a =

p+ 1

p+ 1− s
,

(iii) f =
esγ − 1

e−(p+1−s)γ − 1
, g =

e−sγ − 1

e(p+1−s)γ − 1
with 1 ≤ s ≤ p and a =

s

s− p− 1
,

where γ is a non-constant entire function and p(≥ 2) and s are positive integers
such that s and p+ 1 are relatively prime. Further the following holds:

N(r, a; f, g |≤ 1) = N(r) + S(r, f) =
1

p
T (r, f) + S(r, f).

Following examples show that in Theorem C one cannot replace any of the CM
shared values by IM shared values.

Example 1.1. Let f =
(1− ez)3

1− 3ez
and g =

4(1− ez)
1− 3ez

. Then f and g share 0 IM

and 1, ∞ CM. Since f − 2 =
(1 + ez)(4ez − e2z − 1)

1− 3ez
and g− 2 =

2(1 + ez)

1− 3ez
, we see

that N(r, 2; f, g) 6= S(r, f) but the conclusion of Theorem C does not hold.

Example 1.2. Let f =
e2z(ez − 3)

1− 3ez
and g =

ez − 3

1− 3ez
. Then f , g share 0, ∞ CM

and 1 IM. Since f + 1 =
(1 + ez)(1 + e2z − 4ez)

1− 3ez
and g + 1 =

−2(1 + ez)

1− 3ez
, we see

that N(r,−1; f, g) 6= S(r, f) but the conclusion of Theorem C does not hold.

Example 1.3. Let f =
1− 3ez

(1− ez)3
and g =

1− 3ez

4(1− ez)
. Then f , g share 0, 1 CM

and ∞ IM. Since f − 1

2
=

(1 + ez)(1− 4ez + e2z)

2(1− ez)3
and g − 1

2
= − 1 + ez

4(1− ez)
, we see

that N(r,
1

2
; f, g) 6= S(r, f) but the conclusion of Theorem C does not hold.

In view of the above examples, we may ask the following question: Is it possible
in any way to relax the nature of sharing values in Theorem C ?

We use the notion of weighted sharing of values to answer the above question
in affirmative. In the paper we also investigate the problem of replacing the value
a(6= 0, 1,∞) in Theorem C by a small function a = a(z)( 6≡ 0, 1,∞) of f and g.

We now explain the notion of weighted sharing of values which measures how
close a shared value is to being shared IM or to being shared CM.

Definition 1.7([4, 5]). Let k be a nonnegative integer or infinity. For a ∈ C∪{∞}
we denote by Ek(a; f) the set of all a-points of f where an a-point of multiplicity m
is counted m times if m ≤ k and k + 1 times if m > k. If Ek(a; f) = Ek(a; g), we
say that f, g share the value a with weight k.
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The definition implies that if f , g share a value a with weight k then zo is a zero
of f −a with multiplicity m(≤ k) if and only if it is a zero of g−a with multiplicity
m(≤ k) and zo is a zero of f − a with multiplicity m(> k) if and only if it is a zero
of g − a with multiplicity n(> k) where m is not necessarily equal to n.

We write f, g share (a, k) to mean that f, g share the value a with weight k.
Clearly if f, g share (a, k) then f, g share (a, p) for all integers p, 0 ≤ p < k. Also
we note that f, g share a value a IM or CM if and only if f, g share (a, 0) or (a,∞)
respectively.

We now state the main result of the paper.

Theorem 1.1. Let f and g be two distinct non-constant meromorphic functions
sharing (0, 1), (1,m), (∞, k), where (m− 1)(mk− 1) > (1 +m)2. Further let there
exist a small function a = a(z)( 6≡ 0, 1,∞) of f and g such that N(r, a; f, g) 6=
S(r, f). Then f and g assume one of the following forms:

(i) f =
esγ − 1

e(p+1)γ − 1
, g =

e−sγ − 1

e−(p+1)γ − 1
with 1 ≤ s ≤ p and a ≡ s

p+ 1
,

(ii) f =
e(p+1)γ − 1

e(p+1−s)γ − 1
, g =

e−(p+1)γ − 1

e−(p+1−s)γ − 1
with 1 ≤ s ≤ p and a ≡ p+ 1

p+ 1− s
,

(iii) f =
esγ − 1

e−(p+1−s)γ − 1
, g =

e−sγ − 1

e(p+1−s)γ − 1
with 1 ≤ s ≤ p and a ≡ s

s− p− 1
,

where γ is a non-constant entire function and p and s are positive integers such
that s and p+ 1 are relatively prime. Further the following holds:

N(r, a; f, g |≤ 1) = N(r) + S(r, f) =
1

p
T (r, f) + S(r, f).

Remark 1.1. Examples 1.1, 1.2 and 1.3 show that in Theorem 1.1 the weight of
value sharing cannot be reduced to zero.

Remark 1.2. Theorem 1.1 is valid for the following pairs of least values of m and
k : m = 2, k = 6; m = 3, k = 4; m = 6, k = 2 and m = 4, k = 3.

Following corollary is immediate from Theorem 1.1.

Corollary 1.1. Let f and g be two distinct non-constant meromorphic functions
sharing (0, 1), (1,m), (∞, k), where (m− 1)(mk − 1) > (1 +m)2. Further suppose
that a = a(z)(6≡ ∞) is a small function of f and g, which is not identically equal to
a rational number. Then N(r, a; f, g) = S(r, f).

2. Lemmas

In this section, we present some necessary lemmas.
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Lemma 2.1([2]). If f , g share (0, 0), (1, 0), (∞, 0) then T (r, f) ≤ 3T (r, g)+S(r, f)
and T (r, g) ≤ 3T (r, f) + S(r, g).

This shows that S(r, f) = S(r, g) and we denote them by S(r).

Lemma 2.2([9]). Let f and g be two distinct non-constant meromorphic functions
sharing (0, 1), (1,m) and (∞, k), where (m−1)(mk−1) > (1+m)2. If N(r) 6= S(r),
then one of the following holds:

(i) f is a bilinear transformation of g with N(r) = T (r, f)+S(r) = T (r, g)+S(r),

(ii) f is not a bilinear transformation of g with T (r, f) = T (r, g) + S(r) and

N(r) ≤ 1

2
T (r, f) + S(r).

Lemma 2.3([9]). Let f and g be two distinct non-constant meromorphic functions
sharing (0, 1), (1,m) and (∞, k), where (m − 1)(mk − 1) > (1 + m)2. If N(r) ≥
λT (r, f)+S(r) for some λ >

1

2
then f is a bilinear transformation of g and N(r) =

T (r, f) + S(r) = T (r, g) + S(r) . Further f and g satisfy one of the following : (i)
f + g ≡ 1, (ii) (f − 1)(g − 1) ≡ 1 and (iii) fg ≡ 1.

Lemma 2.4([9]). Let f and g be two distinct non-constant meromorphic functions
sharing (0, 1), (1,m) and (∞, k), where (m − 1)(mk − 1) > (1 + m)2. If N(r) ≤
λT (r, f) + S(r) for some λ(0 < λ < 1) and N(r) 6= S(r) then f is not a bilinear
transformation of g and N(r) = 1

pT (r, f) + S(r), T (r, f) = T (r, g) + S(r) and f , g
satisfy one of the following :

(i) f =
esγ − 1

e(p+1)γ − 1
and g =

e−sγ − 1

e−(p+1)γ − 1
;

(ii) f =
e(p+1)γ − 1

e(p+1−s)γ − 1
and g =

e−(p+1)γ − 1

e−(p+1−s)γ − 1
;

(iii) f =
esγ − 1

e−(p+1−s)γ − 1
and g =

e−sγ − 1

e(p+1−s)γ − 1
;

where s and p(≥ 2) are positive integers with 1 ≤ s ≤ p and s, p + 1 are relatively
prime and γ is a non-constant entire function.

Lemma 2.5([6]). Let f and g be two distinct non-constant meromorphic func-
tions sharing (0, 1), (1,m) and (∞, k), where (m − 1)(mk − 1) > (1 + m)2. Then
N(r, b; f |≥ 2) = S(r) and N(r, b; g |≥ 2) = S(r) for b = 0, 1,∞.

Lemma 2.6([7, 8]). Let f and g be two distinct non-constant meromorphic func-
tions sharing (0, 1), (1,m) and (∞, k), where (m− 1)(mk − 1) > (1 +m)2. If f is
not a bilinear transformation of g then each of the following holds:

(i) T (r, f)+T (r, g) = N(r, 0; f |≤ 1)+N(r, 1; f |≤ 1)+N(r,∞; f |≤ 1)+N0(r)+
S(r),
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(ii) T (r, f) = N(r, 0; g′ |≤ 1) +N0(r) + S(r),

(iii) T (r, g) = N(r, 0; f ′ |≤ 1) +N0(r) + S(r),

(iv) N1(r) = S(r),

(v) N0(r, 0; f ′ |≥ 2) = S(r),

(vi) N0(r, 0; g′ |≥ 2) = S(r),

where N0(r) (N1(r)) denotes the counting function of those simple (multiple) zeros

of f−g which are not the zeros of f(f−1) and
1

f
, also N0(r, 0; f ′ |≥ 2) (N0(r, 0; g′ |≥

2)) is the counting function of those multiple zeros of f ′ (g′) which are not the zeros
of f(f − 1).

Lemma 2.7([1]). Let f and g be two distinct non-constant meromorphic functions
sharing (0, 1), (1,m) (∞, k), where (m−1)(mk−1) > (1+m)2 . If N(r, a; f |≤ 2) 6=
T (r, f) +S(r, f) for some small function a( 6≡ 0, 1,∞) of f and g, then N(r, a; f) =
S(r, f).

3. Proofs of the main results

In this section we present the proofs of the theorems.

Proof of Theorem 1.1. Let φ1 =
F ′

F
− G′

G
and φ2 =

f ′(f − a)

f(f − 1)
− g′(g − a)

g(g − 1)
, where

aF = f and aG = g.

If φ1 ≡ 0, then f ≡ Ag, where A is a constant. Since N(r, a; f, g) 6= S(r), we
get A = 1 and so f ≡ g, which is a contradiction. So φ1 6≡ 0.

We see that m(r, φ1) ≤ m
(
r,
F ′

F

)
+m

(
r,
G′

G

)
+O(1) = S(r) and by Lemma

2.5

N(r,∞;φ1) = N(r,∞;φ1)

≤ N(r, 0; f |≥ 2) +N(r,∞; f |≥ 2) +N(r, 0; a) +N(r,∞; a)

= S(r).

Hence T (r, φ1) = S(r).

Suppose that φ2 6≡ 0. Since φ2 = a

(
f ′

f
− g′

g

)
+ (1 − a)

(
f ′

f − 1
− g′

g − 1

)
, we

get m(r, φ2) = S(r) and by Lemma 2.5 we obtain

N(r,∞;φ2) ≤ N(r,∞;φ2) +N(r,∞; a)

≤ N(r, 0; f |≥ 2) +N(r,∞; f |≥ 2) +N(r, 1; f |≥ 2) +N(r,∞; a)

= S(r).
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Hence T (r, φ2) = S(r). Now we see that

N(r, a; f, g) ≤ N(r, 0;φ2) +N(r, 0; a) +N(r, 1; a) +N(r,∞; a)

≤ T (r, φ2) + S(r)

= S(r),

which is a contradiction. Hence φ2 ≡ 0 and so

(3.1)
f ′(f − a)

f(f − 1)
≡ g′(g − a)

g(g − 1)
.

Let z0 be a zero of f − a and g − a with respective multiplicities p and q. If
a(z0) 6= 0, 1,∞ and a′(z0) 6= 0, then from (3.1) we see that p = q.

Let a(z0) = 0. Then z0 is a zero of f = (f −a) +a and a zero of g = (g−a) +a.

Hence z0 is a zero of
f ′(f − a)

f(f − 1)
and

g′(g − a)

g(g − 1)
with multiplicities p − 1 and q − 1

respectively. So from (3.1) we get p = q. Similarly if a(z0) = 1, we get p = q.
Let z0 be a pole of a = a(z) with multiplicity r. Since z0 is a zero of f − a and

g − a, it follows that z0 is a pole of f and g with multiplicity r. Hence z0 is a zero

of
f ′(f − a)

f(f − 1)
and

g′(g − a)

g(g − 1)
with respective multiplicities p+ r− 1 and q+ r− 1. So

from (3.1) we get p = q. Therefore we obtain

N0(r, a; f, g) ≤ N(r, 0; a′) +N(r, 0; a) +N(r, 1; a) +N(r,∞; a)

≤ 5T (r, a) = S(r).

(3.2)

We now verify that a zero of f − a, which is not a zero of g − a, cannot be a
pole of f and g. Let z1 be a zero of f − a with multiplicity p(≥ 1) which is not a
zero of g − a. Let z1 be a pole of f and g with respective multiplicities q and r.
Since z1 is a zero of f − a, it is also a pole of a = a(z) with multiplicity q. Then we

see that z1 is a zero of
f ′(f − a)

f(f − 1)
with multiplicity p+ q − 1.

Suppose q < r. Then z1 is a pole of g − a with multiplicity r. So z1 is a simple

pole of
g′(g − a)

g(g − 1)
, which is impossible by (3.1).

Suppose q > r. Then z1 is a pole of g− a with multiplicity q. So z1 is a pole of
g′(g − a)

g(g − 1)
with multiplicity q + 1− r, which is impossible by (3.1).

Suppose q = r. Let z1 be a pole of g − a with multiplicity s(≤ r). If s < r

then z1 is a zero of
g′(g − a)

g(g − 1)
with multiplicity q − s − 1. If s = r − 1, then z1 is

a regular point of
g′(g − a)

g(g − 1)
but not a zero of it, which is impossible by (3.1). If

s < r− 1, then from (3.1) we see that q− s− 1 = p+ q− 1 and so p+ s = 0, which

is impossible. If s = r, then z1 is a simple pole of
g′(g − a)

g(g − 1)
, which is impossible by
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(3.1). Suppose that z1 is a regular point of g− a such that g(z1)− a(z1) 6= 0. Then

q = r and z1 is a zero of
g′(g − a)

g(g − 1)
with multiplicity q − 1 . So from (3.1) we get

p+ q − 1 = q − 1, which is impossible.
Let N1(r, a; f | g 6= a) and N∗(r, a; f | g 6= a) respectively denote the counting

functions of the simple and multiple zeros of f − a which are not the zeros of g− a,
where each zero is counted according to its multiplicity.

Noting that a is a small function of f and g, we get from (3.1) that a common
zero of f − a and f(f − 1) is a zero of g − a. This together with Lemma 2.5 and
Lemma 2.6 (vi) gives

(3.3) N1(r, a; f | g 6= a) = N(r, 0; g′ |≤ 1) + S(r)

and

(3.4) N∗(r, a; f | g 6= a) ≤ N0(r, 0; g′ |≥ 2) + S(r) = S(r).

We now denote by N2(r, a; f, g) the counting function of common double zeros
of f − a and g− a, where zeros are counted according to multiplicity. Since f − a =
a(F − 1) and g − a = a(G− 1), we get

(3.5) N2(r, a; f, g) ≤ 2N(r, 0;φ1) + 2N(r, 0; a) + 2N(r,∞; a) = S(r).

Now from (3.2), (3.3), (3.4) and (3.5) we get

(3.6) N(r, a; f |≤ 2) = N(r, a; f, g |≤ 1) +N(r, 0; g′ |≤ 1) + S(r).

Since N(r, a; f, g) ≤ N(r, a; f) and N(r, a; f, g) 6= S(r, f), by Lemma 2.7 we
obtain

(3.7) T (r, f) = N(r, a; f |≤ 2) + S(r).

Now from (3.6), (3.7) and Lemma 2.6 (ii) we get

(3.8) N(r, a; f, g |≤ 1) = N0(r) + S(r).

From (3.8) we see by Lemma 2.6 (iv) that

N0(r) + S(r) = N(r, a; f, g |≤ 1) ≤ N(r, a; f, g) ≤ N0(r) + S(r)

and so

(3.9) N(r, a; f, g) = N0(r) + S(r).

Since by Lemma 2.6 (iv) N(r) = N0(r) +N1(r) = N0(r) +S(r), from (3.8) and
(3.9) we get

(3.10) N(r, a; f, g |≤ 1) = N(r) + S(r)
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and

(3.11) N(r, a; f, g) = N(r) + S(r).

From (3.11) and the hypotheses of the theorem we see that N(r) 6= S(r). We
now consider the following two cases.

Case I. Let T (r, f) = N(r)+S(r). Then by Lemma 2.2 and Lemma 2.3 we see that
f and g satisfy one of the following relations : f + g ≡ 1, (f − 1)(g − 1) ≡ 1 and
fg ≡ 1.

Let f + g ≡ 1. Then f and g do not assume the values 0 and 1. So there exists

a non-constant entire function γ such that f =
1

1 + eγ
and g =

1

1 + e−γ
, which is

the possibility (i) of the theorem for p = 1. Also in this case we get from (3.1) that

a ≡ 1

2
.

Let (f−1)(g−1) ≡ 1. Then f and g do not assume the values 1 and∞ . Hence
there exists a non-constant entire function γ such that f = 1 + eγ and g = 1 + e−γ ,
which is the possibility (ii) of the theorem for p = 1. Also in this case we get from
(3.1) that a ≡ 2.

Let fg ≡ 1. Then f and g do not assume the values 0 and ∞. Hence there
exists a non-constant entire function γ such that f = −eγ and g = −e−γ , which is
the possibility (iii) of the theorem for p = 1. Also in this case we get from (3.1)
that a ≡ −1.

Case II. Let T (r, f) 6= N(r) +S(r). Then by Lemma 2.2, Lemma 2.4 and (3.10) we
see that f and g assume one of the forms (i), (ii) and (iii) of the theorem and

N(r, a; f, g |≤ 1) = N(r) + S(r, f) =
1

p
T (r, f) + S(r, f).

If f and g assume the form (i), then
f ′

f
− g
′

g
≡ (s−p−1)γ′ and

f ′

f − 1
− g′

g − 1
≡

sγ′. Since γ′ 6≡ 0, from (3.1) we get a ≡ s

p+ 1
. Similarly if f and g assume the

forms (ii) and (iii), then we respectively obtain a ≡ p+ 1

p+ 1− s
and a ≡ s

s− p− 1
.

This proves the theorem. 2
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