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ABSTRACT. In this paper we consider mappings o which map the binary operation symbol
f to the term o(f) which do not necessarily preserve the arities. We call these mappings
generalized hypersubstitutions. Any generalized hypersubstitution o can be extended to
a mapping ¢ on the set of all terms of type 7 = (2). We define a binary operation on the
set Hypa(2) of all generalized hypersubstitutions of type 7 = (2) by using this extension.
The set Hypc(2) together with the identity generalized hypersubstitution o;q which maps
f to the term f(z1,x2) forms a monoid. We determine all regular elements of this monoid.

1. Introduction

The main tool for studying hyperidentities is the concept of a hypersubstitution
which was introduced by K. Denecke, D. Lau, R.Poschel and D. Schweigert [1] (see
also in [3]). In [5], S. Leeratanavalee and K. Denecke generalized the concept of a
hypersubstitution to a generalized hypersubstitution and that of hyperidentities to
strong hyperidentities. Let {f;|i € I} be an indexed set of operation symbols of
type T where f; is n;-ary, n; € IN. Let W, (X) be the set of all terms of type 7 built
up by operation symbols from {f; | i € I} and variables from X := {z1,z2,z3,...}.
A generalized hypersubstitution is a mapping ¢ which maps each n;-ary operation
symbol of type 7 to a term of this type which does not necessarily preserve the arity.
To define the extension ¢ of o, we define inductively the concept of superposition
of terms S™ : W, (X)™ Tt — W, (X) as follows:

for t € W, (X),

(i) ift =2;,1 <j <m, then S™(z;,t1,...,tm) =1,
(ii) if t =a;,m < j € IN, then S™(z;,t1,...,tm) == x;,

(iii) if ¢t = fi(s1,...,8n,), then
Sm(t,tl,...7tm) = fi(Sm(Sl,th...,tm),...,Sm(sni,tl,...,tm)).
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Then we extend the generalized hypersubstitution o to a mapping 6 : W.(X) —
W-(X) as follows:

(i) olzj] =x; € X,

(i) a[fi(t1,... tn,)] == S™(a(fi),0[t1],-..,6][tn,]), for an n;-ary operation sym-
bol f; where 6[t;], 1 < j < n; are already known.

Let Hypa(7) be the set of all generalized hypersubstitutions of type 7. We
define a binary operation og on Hypg(T) by 01 og 09 := &1 0 09 for every 01,09 €
Hype (1), where o denotes the usual composition of mappings. Let o;4 be the
generalized hypersubstitution which maps each n;-ary operation symbol f; to the
term f;(x1,...,2n,). Then we have the following two propositions.

Proposition 1.1([5]). For arbitrary terms t,t1,...,t, € W (X) and for arbitrary
generalized hypersubstitutions o, 01,09 we have

(i) 5™(6[t],6[t], ..., 6[ta]) = G[S™(t, t1,- .. tn)],
(i1) (61002) =610 06s.

Proposition 1.2([5]). Hypa(7) = (Hypc(7); oG, 0id) 18 a monoid where o;q is the
identity element and the monoid Hyp(T) = (Hyp(7);0p,044) of all arity preserving
hypersubstitutions of type T forms a submonoid of Hypg (7).

For more details on generalized hypersubstitutions see [4] and [5]. Next, we will
determine all regular elements of the monoid Hypg(2).

2. Regular elements in Hypa(2)

From now on, we assume that the type is 7 = (2), i.e. we have only one binary
operation symbol, say f. By o; we denote the generalized hypersubstitution which
maps f to the term ¢t and by var(t) we denote the set of all variables occurring in
the term ¢t. We will determine all regular elements of Hypg(2). Firstly, we recall
the definition of a regular element.

Definition 2.1([2]). An element a of a semigroup S is called regular if there exists
x € S such that axa = a. The semigroup S is called regular if all its elements are
regular.

Theorem 2.2. Let t € W) (X). Then oy is regular iff t has one of the following
forms:

)t

—
s

f(z2,8) for s € Wiy (X) with 21 ¢ var(s),

~

s,x2) for s € Woy(X) with 21 ¢ var(s

)

S

)

with xo & var

= f(x2,) ) (s)
= f(s,22) ) (s)
= f(x1,s) for s € Wz)(X) (s)
= f(s,21) )(X) (s)

s}
= O =
~ ~~

f

s,x1) for s € Way(X) with xo ¢ var(s),
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(e) t € {z1, 22, f(21,22), f(z2,21)},
(f) var(t) N{z1,z2} = 0.
Proof. In the right-to-left direction, it is easy to verify that

a) 0t 0G Of(zy,2,) OC Tt = Ot OG O f(wg,05) = Tt-

(

(b) 019G Of(2y,20) OG Ot = 01 OG O f(xy,2) = Ot-

(¢) and (d) are similarly as (a) and (b), respectively.
() is trivial since o} = 0.

(

f) otoc 0iaoG or = 010G 0r = 0.
For the converse direction, we have the following situation. Let o; be regular. Then

there is 05 € Hypa(2) such that oyogosogor = oy, If t ¢ X U{f (21, 22), f(z2,21)}
and var(t) N {z1,x2} # 0, then we consider four cases for ¢:

Case 1: t = f(t1,21) where t; € W(2)(X)\ X and x3 € var(ty) or t = f(x1,t2) where
ty € Wioy(X) \ X and x3 € var(ts).

Case 2: t = f(t1,22) where t; € W(2)(X)\ X and x1 € var(ty) or t = f(x2,t2) where
ty € Wiy(X) \ X and x1 € var(ts).

Case 3: t = f(t1,2;) where t; € W5y (X) \ X and 2y € var(t1) or t = f(;,12) where
ty € Wiy(X) \ X and x5 € var(ts).

Case 4: t = f(t1,t2) where t1,ty € W2)(X) \ X and 21 € var(t;) Uvar(ts) or xp €
var(ty) Uvar(tsz).

Let t = f(t1,t2) where t1,ty € W(9)(X). Consider (0,06 0506 0¢)(f) = (¢, t,) °c

050G Of(ty 1)) (f) = Op(t1,02)[0s[f (t1, E2)]] = f(t1,t2). We put u = &,[f(t1,t2)]. We
have v ¢ X and thus u = f(u1,uz) for some uy,uy € Wig)(X), i.e.

(1) Gy [f(ur,u2)] = S2(f(t1,t2), 6 p (a1 00) [Wa), O f 1y 1) [U2]) = f(t1, t2)

Case 1: t = f(t1,x1) where t; € W(3)(X) \ X and 2o € var(t;) or t = f(x1,12)
where ty € W2)(X)\ X and x5 € var(ts).

Case 1.1: t = f(ty,21) where t; € W(2)(X) \ X and z3 € var(t1). Then by
(1), we have

SZ(f(tlvxl)v&f(tl,wl)[ul}aé'f(thml)[u?]) = f(t1,331).

Thus 6 (4, o,)[u1] = x1 and since xo € var(ty), we have Gy, »,)[u2] = 2. We have
u; = x1,us = x2. Thus u = f(x1,22) and 65[f(t1,21)] = fa1,22). It is clear
that s ¢ X. So s = f(s1,52) for some s1,50 € Wiy (X). Thus 645, ) [f(t1,71)] =
SQ(f(sl,82),&“51’52)[751],331) = f(x1,22). Since t; ¢ X, we have G, s,)[t1] ¢ X.
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Therefore sy = 21 and (s, s,)[t1] = z2 which contradicts to (s, ,)[t1] ¢ X.
Hence o4, o,) is not regular.

Case 1.2: t = f(x1,t2) where to € W5y (X) \ X and 25 € var(tz). We can
prove that oy, ¢,) is not regular by the similar way as in Case 1.1.

Case 2: t = f(t1,22) where t; € W5 (X)\ X and z1 € var(ty) or t = f(x2,12)
where to € W) (X) \ X and x1 € var(tz). We can prove that o, 2,) and o (s, 1)
are not regular by the similar way as in Case 1.

Case 3: t = f(t1,2;) where t; € W5y (X) \ X and 21 € var(ty) or t = f(x4,12)
where ty € W(9)(X)\ X and z» € var(tz).

Case 3.1: t = f(t1,x;) where t; € W5 (X)\ X and x; € var(ty). Then by (1),
we have

S?(f (1, 22), 6 4ty 0[], 6 gty [U2]) = f (1, 24).
Since x1 € war(ty), we have G4, z,)[u1] = 1. We have u; = z;. Thus u =
f(z1,u2) and 65[f(t1, ;)] = f(x1,u2). It is clear that s ¢ X. So s = f(s1, s2) for
some s1,52 € W2 (X). Thus 6 ps, ) [f(t1,@5)] = S2(f(51,52), G p(sy,00) [t1), 7) =
f(z1,uz). Therefore s; = 21 = 65, 5,)[t1]. Since t; ¢ X, we have (5, o,)[t1] € X
which contradicts to G s, s,)[t1] = 21. Hence oy, ,) is not regular.

Case 3.2: t = f(x;,t2) where to € W9)(X) \ X and x5 € var(ty). We can
prove that oy, 1,) is not regular by the similar way as in Case 3.1.

Case 4: t = f(t1,t2) where t1,to € W) (X) \ X and 21 € var(t;) Uvar(ty) or
x2 € var(ty) Uvar(ts).

Case 4.1: t = f(t1,t2) where x1 € var(t;) Uvar(tz). Then by (1), we have

S2(f(t17t2)7&f(t1,t2)[u1]aa-f(t1,t2)[u2}) = f(tlth)'

Since xy € war(ty) U var(tz) then Gy, 1)[u1] = x1. We have u; = 1.
Thus v = f(z1,u2) and 6s[f(t1,t2)] = f(z1,u2). Tt is clear that s ¢
X. So s = f(s1,s2) for some 51,80 € Wy (X). Thus Gy, s [f(t1,t2)] =
S2(f(81,32),&f(sl’SQ)[tl},6f(51,82)[t2]) = f(x1,u2). Therefore t; = x1 which con-
tradicts to ¢, ¢ X. Hence 04, +,) is not regular.

Case 4.2: t = f(t1,12) where 2o € var(t)Uvar(t2). We can prove that oz, )
is not regular by the similar way as in Case 4.1. O
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