DOI QR코드

DOI QR Code

Physiological Activities of Extracts from Different Parts of Cudrania tricuspidata

꾸지뽕나무 부위별 추출물의 생리활성 탐색

  • Received : 2011.05.19
  • Accepted : 2011.06.07
  • Published : 2011.07.31

Abstract

The physiological activities of extracts from the leaf, stem, and fruit of Cudrania tricuspidata were investigated. The electron-donating ability (EDA) of the 70% (v/v) ethanolic extract of stem was 90.20%; this was the highest value of all the extracts tested and higher than the L-ascorbate solutions. The total polyphenol contents were the highest in the leaf extracts under all extraction conditions. Especially, 70% (v/v) methanolic extract of leaf contained the highest total polyphenol content of 224.48 mg%. SOD-like activity showed the highest activity in water extract of leaf at 64.53%. Tyrosinase-inhibitory activities were the most effective in all extracts of fruit. ACE inhibitory activities were the highest in water extract of fruit. Nitrite-scavenging abilities under acidic conditions (pH 1.2 and pH 3.0) were the most effective in all the extracts. The results of this study will be useful for understanding the physiological activities of Cudrania tricuspidata extracts.

꾸지뽕나무를 잎, 줄기, 열매로 부위별 추출조건에 따른 추출물의 생리활성을 알아보고자 전자공여작용, 총 폴리페놀 함량, SOD 유사활성, tyrosinase 저해 효과, 아질산염 소거작용 및 ACE 저해 활성을 측정하였다. 전자공여능의 경우 추출용매에 따라 70% 에탄올>70% 메탄올>물 추출물순으로 활성을 나타냈으며, 특히 줄기의 70% 에탄올 추출물이 90.20%로 가장 높았다(p<0.05). 이는 비교물질인 Lascorbate의 활성보다 높은 수치였다. 총 폴리페놀 함량 측정 결과 모든 추출조건에서 잎 추출물이 가장 많은 폴리페놀을 함유하고 있었다(p<0.05). 또한 추출용매에 따라 70% 메탄올 추출물들이 폴리페놀을 많이 포함하고 있음을 알 수 있었다. SOD 유사활성은 잎의 물 추출물이 64.54%로 가장 높은 활성을 나타냈다(p<0.05). Tyrosinase 저해효과에서는 열매 추출물이 가장 높은 저해능을 보였다. 아질산염 소거능은 모든 추출물이 산성조건에서 소거능이 높게 나타났고, 추출조건과 상관없이 잎 추출물의 소거능이 가장 높은 것으로 분석되었다. ACE 저해 활성은 열매 물 추출물에서 85.14%의 활성을 가장 높은 경향을 보였다. 꾸지뽕 나무의 부위 및 용매에 따라 각각 활성이 다르게 나타났다. 이러한 결과를 토대로 활성이 다소 뛰어난 잎의 경우, 일상에서도 쉽게 구할 수 있어 일반인들이 식용으로 이용하기 용이하므로 차와 음료 등의 건강 음료개발을 통해 소비를 활성화할 수 있다. 그 외 줄기, 열매 등도 잎과 함께 이를 이용한 환, 캡슐 등의 다양한 기능성식품으로의 개발 가능성을 확인하였다.

Keywords

References

  1. Kangjoshineuihakwon. 1985. Jungyakdesajon. 2nd ed. Sohakkyan, Shanghai, China. p 2383.
  2. Choi SR, You DH, Kim JY, Park CB, Kim DH, Ryu J. 2009 Antioxidant activity of methanol extracs from Cudrania tricuspidata Bureau according to harvesting parts and time. Korean J Medicinal Crop Sci 17: 115-120.
  3. Fujimoto T, Nomura T. 1985. Components of root bark of Cudrania tricuspidata 3. Isolation and structure studies on the flavonoids. Planta Med 51: 190-196. https://doi.org/10.1055/s-2007-969453
  4. Park IC, Young HS, Choi JS. 1992. Constituents of Cudrania tricuspidata in Korea. Yakhak Hoeji 36: 40-45.
  5. Lee IK, Kim CJ, Song KS, Kim HM, Koshino H, Uramoto M, Yoo ID. 1996. Cytotoxic benzyl dihydroflavonols from Cudrania tricuspidata. Phytochemistry 41: 213-216. https://doi.org/10.1016/0031-9422(95)00609-5
  6. Kim SH, Kim NJ, Choi JS, Park JC. 1993. Determination of flavonoid by HPLC and biological activities from the leaves of Cudrania tricuspidata Bureau. J Korean Soc Food Nutr 22: 68-72.
  7. Lee BW, Kang NS, Park KH. 2004. Isolation of antibacterial prenylated flavonoids from Cudrania tricuspidata. J Korean Soc Appl Biol Chem 47: 270-273.
  8. Choi SR, You DH, Kim JY, Park CB, Kim DH, Ryu J, Choi DG, Park HM. 2009. Antimicrobial activity of methanol extracts from Cudrania tricuspidata Bureau according to the parts harvested and time. Korean J Medicinal Crop Sci 17: 335-340.
  9. Park WY, Ro JS, Lee KS. 2001. Hypoglycemic effect of Cudrania tricuspidata root bark. Kor J Pharmacogn 32: 248-252.
  10. Cha JY, Kim HJ, Cho YS. 2000. Effect of water soluble extract from leaves of Morus alba and Cudrania tricuspidata on the lipid peroxidation in tissues of rats. J Korean Soc Food Sci Nutr 29: 531-536.
  11. Kang DG, Hur TY, Lee GM, Oh HC, Kwon TO, Sohn EJ, Lee HS. 2002. Effects of Cudrania tricuspidata water extract on blood pressure and renal functions in NO-dependent hypertension. Life Sci 70: 2599-2609. https://doi.org/10.1016/S0024-3205(02)01547-3
  12. Blois MS. 1958. Antioxidant determination by the use of a stable free radical. Nature 181: 1198-1200.
  13. Folin O, Denis W. 1912. On phosphotungastic-phosphomolybdic compounds as color reagents. J Biol Chem 12: 239-249.
  14. Marklund S, Marklund G. 1975. Involvement of superoxide amino radical in the oxidation of pyrogallol and a convenient assay for superoxide dismutase. Eur J Biochem 47: 468-474.
  15. Gray JI, Dugan Jr LR. 1975. Inhibition of N-nitosamine formation in model food system. J Food Sci 40: 981-984. https://doi.org/10.1111/j.1365-2621.1975.tb02248.x
  16. Wong TC, Luh BS, Whitaker JR. 1971. Isolation and characterization of polyphenol oxidase of clingstone peach. Plant Physiol 48: 19-23. https://doi.org/10.1104/pp.48.1.19
  17. Cushman DW, Chung HS. 1971. Spectrophotometric assay and properties of the angiotensin-converting enzyme of rabbit lung. Biochem Pharmacol 20: 1637-1648. https://doi.org/10.1016/0006-2952(71)90292-9
  18. Kim HJ, Cha JY, Choi ML, Cho YS. 2000. Antioxidative activities by water-soluble extracts of Morus alba and Cudrania tricuspidata. J Korean Soc Agric Chem Biotechnol 43: 148-152.
  19. Sa JH, Jin YS, Shin IC, Shim TH, Wang MH. 2004. Photoprotective effect and antioxidative activity from different organs of Morus bombycis Koidzumi. Kor J Pharmacogn 35: 207-214.
  20. Cha JY, Kim HJ, Chung CH. Cho YS. 1999. Antioxidative activities and contents of polyphenolic compound of Cudrania tricuspidata. J Korean Soc Food Sci Nutr 28: 1310-1315.
  21. Kang MH, Choi CS, Kim ZS, Chung HK, Min KS, Park CG, Park HW. 2002. Antioxidative activities of ethanol extract prepared from leaves, seed, branch and aerial part of Crotalaria sessiflora L. Korean J Food Sci Technol 34: 1098-1102.
  22. Seo SJ, Kim NW. 2010. Physiological activities of leaf and root extracts from Liriope platyphylla. Korean J Food Preserv 17: 123-130.
  23. Lee HJ, Do JR, Kwon JH, Kim HK. 2010. Antioxidant effects of Viscum album L. extracts by extraction conditions. J Korean Soc Food Sci Nutr 39: 14-19. https://doi.org/10.3746/jkfn.2010.39.1.014
  24. Ju MJ, Kwon JH, Kim HK. 2009. Physiological activities of mulberry leaf and fruit extracts with different extraction conditions. Korean J Food Preserv 16: 442-448.
  25. Song HS, Kim DP, Jung YH, Lee MK. 2007. Antioxidant activities of red hamcho (Salicornia herbacea L.) against lipid peroxidation and the formation of radicals. Korean J Food Nutr 20: 150-157.
  26. Jung SW, Lee NK, Kim SJ, Han DS. 1995. Screening of tyrosinase inhibitor from plants. Korean J Food Sci Technol 27: 891-896.
  27. Jung SW, Lee NK, Kim SJ, Han DS. 1995. Screening of tyrosinase inhibitor from plants. Korean J Food Sci Technol 27: 891-896.
  28. Park YS, Jang HG. 2003. Lactic acid fermentation and biological activities of Rubus coreanus. J Korean Soc Agric Chem Biotechnol 46: 367-375.
  29. Ye EJ, Kim SJ, Nam HS, Park EM, Bea MJ. 2010. Physiological evaluation of Korean mountain ginseng and Korean mountain ginseng leaf tea. Korean J Food Culture 25: 350-356.
  30. Kytopoulos SA. 1987. Ascorbic acid and formation of N-nitroso compounds; possible role of ascorbic acid in cancer prevention. Am J Clin Nutr 45: 1344-1350.
  31. Na GM, Han HS, Ye SH, Kim HK. 2004. Physiological activity of medicinal plant extracts. Korean J Food Preserv 11: 388-393.
  32. Manjusri D, Richard LS. 1975. Pulmonary angiotensin converting enzyme. J Biol Chem 250: 6762-6766.

Cited by

  1. Physiological Activities of Cudrania tricuspidata Extracts (Part I) vol.14, pp.8, 2013, https://doi.org/10.5762/KAIS.2013.14.8.3907
  2. Comparison of Physiological Activities of Radish Bud (Raphanus sativus L.) according to Extraction Solvent and Sprouting Period vol.44, pp.4, 2015, https://doi.org/10.3746/jkfn.2015.44.4.549
  3. Antioxidative Activity and Quality Characteristics of Rice Madeleine Added with Pine Needle Powder and Extract vol.43, pp.3, 2014, https://doi.org/10.3746/jkfn.2014.43.3.446
  4. Neuroprotective Effect according to Reactive Oxygen Species Scavenging Activity from Extracts of Cudrania tricuspidata Leaves vol.28, pp.6, 2012, https://doi.org/10.9724/kfcs.2012.28.6.821
  5. Phenolic compounds in different parts of young Annona muricata cultivated in Korea and their antioxidant activity 2017, https://doi.org/10.1007/s13765-017-0309-5
  6. Synthesis of trans-(3R,5S)-Atorvastatin Ca and Curative Effect on Hyperlipidemia Induced by a High-Fat Diet in Rats vol.12, pp.11, 2011, https://doi.org/10.5762/KAIS.2011.12.11.4940
  7. Comparison of α-glucosidase inhibition by Cudrania tricuspidata according to harvesting time vol.1, pp.4, 2013, https://doi.org/10.3892/br.2013.111
  8. Maturity stage-specific metabolite profiling of Cudrania tricuspidata and its correlation with antioxidant activity vol.70, 2015, https://doi.org/10.1016/j.indcrop.2015.01.048
  9. Fermentation characteristics of mulberry (Cudrania tricuspidata) fruits produced using microbes isolated from traditional fermented food, and development of fermented soybean food vol.21, pp.6, 2014, https://doi.org/10.11002/kjfp.2014.21.6.866
  10. Physicochemical Properties and Antioxidant Activities of Different Parts of Kkujippong (Cudrania tricuspidata Bureau) from Miryang vol.31, pp.4, 2015, https://doi.org/10.9724/kfcs.2015.31.4.510
  11. 꾸지뽕나무 추출물의 피부 생리 활성 vol.32, pp.2, 2011, https://doi.org/10.12925/jkocs.2015.32.2.260
  12. [Retracted] Optimization of Jirisan Mountain Cudrania tricuspidata leaf substance extraction across solvents and temperatures vol.21, pp.2, 2011, https://doi.org/10.3831/kpi.2018.21.006
  13. 뽕나무(Morus alba)와 꾸지뽕나무(Cudrania tricuspidata)의 부위에 따른 항산화 활성 및 3T3-L1세포 지방축적 억제 효과 vol.32, pp.2, 2011, https://doi.org/10.9799/ksfan.2019.32.2.138