
Copyright © 2011. The Korean Institute of Information Scientists and Engineers pISSN: 1976-4677 eISSN: 2093-8020

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/
by-nc/3.0/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

Ubiscript: A Script Language for Ubiquitous Environment
Minkyu Lee and Dongsoo Han*
Department of Computer Science, Korea Advanced Institute of Science and Technology, Daejeon, Korea
niklaus@kaist.ac.kr, dshan@kaist.ac.kr

Abstract

Many distributed and heterogeneous services and devices are accessible in ubiquitous computing environment, so interoperating those
services and devices is one of the key tasks in implementing ubiquitous applications. We used to use script languages in integrating such
interoperating components and services. However currently available most script languages are not suitable for ubiquitous environment
because there are so diverse forms of interoperation targets such as service objects, web, legacy objects and programmable devices.
So it is worthwhile designing a new script language well-suited to ubiquitous environment. In this paper, we propose a new script lan-
guage, called Ubiscript, for the ubiquitous environment. We develop and adopt several unique language features such as remote scope,
multiple contexts, web and legacy objects, remote exception handling, etc. in Ubiscript to overcome the limitations of conventional
script languages. In this paper, we also describe the implementation of Ubiscript and its runtime system. A couple of ubiquitous applica-
tions were developed in Ubiscript, and the applications are tested on the runtime system. According to our experiences and evaluation,
Ubiscript turned out to have a high potential in its expression power and contribution to improving ubiquitous application developers’
productivity.

Category: Ubiquitous computing

Keywords: Ubiquitous computing; Script language; Mobile code

I. INTRODUCTION

The ubiquitous computing [1] assumes that there are many
distributed and heterogeneous devices, appliances, sensors in
our everyday life environment such as home, office, car, hospi-
tal, and so on. These are interconnected via networks and inter-
operate seamlessly with each other in ubiquitous applications to
provide convenient services for users. Let’s consider the follow-
ing morning scenario in a smart home: Tom is a business man
and he has to go to his office by 9 o’clock at every weekday.
At 7 o’clock every weekday morning, digital alarm clock in his
bedroom starts ringing to wake him up. In his living room, a
large liquid crystal display (LCD) panel on the wall displays the
weather information of the day such as temperature, humidity,
the possibility of rain, and a television shows today’s morning
news. If the temperature is below the preset minimum tempera-
ture, the air-conditioner in his car is automatically turned on to

heat up the car. The first appointment location stored in his cal-
endar software in the computer at his office is automatically set
up as the destination in the navigation system of his car.

In order to implement this scenario we need to consider many
technologies such as context-awareness and service discovery,
but we will focus on how to integrate services and devices in
ubiquitous environment. In the above scenario, we can figure out
four different kinds of interoperation. The first one is interopera-
tion with service objects. In order to control a device, we need
a service object implemented in a middleware such as UPnP
[2], Jini [3], service location protocol (SLP) [4], and so on. The
second one is interoperation with web. We can acquire diverse
information such as weather, traffic, geography and currency, so
it is an important issue to access information on the web in ubiq-
uitous computing environment. The third one is interoperation
with legacy objects. Since we always live together with legacy
systems even when ubiquitous computing vision is realized in

*Corresponding Author

10.5626/JCSE.2011.5.2.141Open Access

Regular Paper

Received 22 February 2011, Accepted 21 March 2011

http://jcse.kiise.org

Journal of Computing Science and Engineering,
Vol. 5, No. 2, June 2011, pp. 141-149

Journal of Computing Science and Engineering, Vol. 5, No. 2, June 2011. pp. 141-149

DOI: 10.5626/JCSE.2011.5.2.141 142 Minkyu Lee and Dongsoo Han

the future, so integrating with legacy systems is crucial in real
situations. The last one is interoperation with programmable de-
vices. In ubiquitous environment, there are many programmable
devices such as television, refrigerator and navigation system.
They can execute a program by themselves because they have
own processor, memory and networking capability. Providing
just service objects is not enough to control them. For example,
if a graphical user interface is necessary on a television, we can-
not implement such service just calling the operations of service
objects. We must prepare a separated program and deploy it on
the device and then execute it. That is, we need an interface to
execute a separate program on a programmable device.

In this paper, we introduce Ubiscript, a script language de-
signed to meet the requirements for ubiquitous computing
environment. The Ubiscript language is an object-based, in-
terpreted script language syntactically similar to ECMAScript
[5]. The several new characteristics are embodied in Ubiscript
language. Those are remote scope, web and legacy objects, mul-
tiple contexts, remote exception handling, etc. Remote scope is
a linguistic element to naturally express the nature of ubiquitous
computation. It can be simply understood as the extension of
scope concept of general programming language theory for the
application of the remote devices. With remote scope, we can
write a ubiquitous application that is executed on distributed
multiple computing devices in a single source file. Another key
characteristic of Ubiscript is multiple contexts. In ubiquitous
computing environment, many perspectives should be accom-
modated on a single machine. For example, a television can be
integrated in applications such as home banking, healthcare,
crime prevention, shopping and so on. Each application requires
the television to provide different contexts (or computational
environments) that consist of objects, functions, variables, and
security policies. In Ubiscript, multiple contexts which have a
unique uniform resource identifier (URI) can be defined in a run-
time system. In addition, web and legacy objects are provided
for interoperation with web and legacy components, and remote
exception handling is provided for adapting device failures.

We implemented Ubiscript and its runtime system. A couple
of ubiquitous applications were developed in Ubiscript, and the
applications are tested on the runtime system. According to our
experiences and evaluation, Ubiscript turned out to have a high
potential in its expressive power and contribution to improving
the productivity of ubiquitous application developers. The rest
of the paper describes Ubiscript language, its runtime system
with detailed explanation of key characteristics and the imple-
mentation of Ubiscript, and an experimental ubiquitous application.

II. Language Requirements

As the first step to design a new script language, we identified
six requirements from the limitations of traditional script lan-
guages in the context of ubiquitous environments. The require-
ments are summarized in the below.

A. Dynamic Service Invocation

There are two ways to invoke a service in system program-
ming languages. The first way is using stub code. To enable

programmers to call a remote method in the manner as a local
method, we need a stub code which encapsulates networking
and marshalling tasks. In the case of a web service, we generate
a stub code from web services description language (WSDL).
The second way is calling a service dynamically. In order to call
a service dynamically, we need to marshall parameters and un-
marshall results manually. We want to achieve the advantages of
both of the ways: allowing a programmer to call a service like a
local call without generating and incorporating a stub code. This
is applicable to legacy and web services as well as ubiquitous
services. It enables a programmer to integrate many services
easily and rapidly.

B. Code Mobility

Code mobility is to support one for showing a graphical user
interface (GUI) in a remote device. Displaying today’s morning
news in a television in the above morning scenario is the case
for code mobility. Implementing the GUI as a pre-deployed ser-
vice is not flexible and practical because the service is better to
be deployed and invoked at runtime. A script program, which
dynamically builds a GUI via network at runtime, is much more
convenient to provide such services.

C. Distributed Logic

Typically, a service scenario in ubiquitous environment in-
tegrates diverse forms of devices and services. So, it is neces-
sary to specify multiple mobile and stationary codes in a single
source text because we usually specify a task in a single source
text in a script language in general. According to Banavar and
Bernstein [6], ubiquitous applications are not regarded as pieces
of software targeted to a particular device or environment but
rather higher-level description of tasks a user needs to perform.

D. Security

If a distrusted program sneaks into and controls remote de-
vices, specially the devices at your home, it may result in severe
privacy and security problems. Therefore only authorized and
trusted programs must be allowed to access devices that you are
using for your conveniences.

E. Failure Handling

Ubiquitous environment frequently changes. A device may
newly join and a device may accidentally be inaccessible. A
program must be able to adapt to this changes with flexibility.
Consider the situation that if you need print a document and
suddenly the connected printer is in failure, but other alternative
devices (e.g., fax or plotter) may be able to do the work instead.
In order to adaptively cope with this failure situation, we need
facilities to catch and handle the failures.

F. Concurrency

In ubiquitous environment, more than one device often
works concurrently due to the nature of the task or to enhance
the performance. For example, a micro-oven can scald a dish

Ubiscript: A Script Language for Ubiquitous Environment

143 http://jcse.kiise.orgMinkyu Lee and Dongsoo Han

while a television is delivering today’s news. Therefore, a new
script language needs language facilities to specify concurrent
jobs in a single source text.

III. THE UBISCRIPT LANGUAGE

In the previous section, we described some essential features
and requirements of a new script language in ubiquitous com-
puting environments. We designed a new script language with
some advanced ubiquitous programming facilities, which are
missing in conventional general purpose script languages, is de-
sirable for the support of ubiquitous application development.
In this section, we describe the new language, called Ubiscript,
in detail.

A. Language Overview

Simplicity is one of the most important design principles
of Ubiscript language. To achieve this, we minimally add new
linguistic elements to a conventional general script language in
meeting the requirements for ubiquitous computing environ-
ments. Ubiscript is based on the syntax and semantics of EC-
MAScript [5], and it adopts mobile code technology to embody
the ubiquitous computation model.

B. Remote Scope

In a programming language, the scope of a variable is the
range of statements in which the variable is visible [7]. For ex-
ample, the scope of a variable declared in a function body is the
statements inside the function body. In traditional languages, the
scope is limited in a single computing machine, but we need to
expand the scope concept to the ubiquitous computing environ-
ment. We define that remote scope of a variable is the range of
remote statements in which the variable is visible. Here, remote
statements are the statements located in remote machines. The
remote scope is a part of the range of the whole scope. In order
to express ubiquitous computation naturally, we need to expand
the scope of variables in remote devices, so as to access the re-
mote variables in local statements.

Let’s consider an example program in Fig. 1. Machine A has
a program text to be executed, and machine B has an environ-
ment for the program text. A variable p in machine A refers to
the environment in machine B. The on clause provides a block
with expanded scope for each variable declared in environment
p. This range inside of on block is the remote scope of the en-
vironment p. More specifically, the scope of all variables in the
environment p is expanded to the range of the on block. Now
guess, which value will be printed on machine A? The answer
is 30 because the variable y and z in the machine B are visible in
the on block and the variable x is visible in all the rest program
text. The remote scope mechanism is implemented by mobile
code technologies [8], so the statements inside on block is ac-
tually moved to the remote machine and then executed on the
machine. We explain the details of the mechanism later.

The morning scenario described earlier can be briefly speci-
fied in Ubiscript as shown in Fig. 2. Each device, such as tele-
vision, car, and PC provides an environment. To execute some

statements in an environment, we need a reference to the en-
vironment. In Ubiscript everything that occupies memory is
considered as object, so the reference is also represented by an
object. We call it a place object. A place object can be obtained
by calling Place constructor with the device’s uniform resource
identifier (URI).

The on block requires a place object where the statements
inside the block to be executed. When an on block starts ex-
ecution, the statements inside the block are encoded and trans-
mitted to the environment pointed to by the place object, and

Fig. 1. An illustration of remote scope mechanism. (a) shows status of
machine A and B before execution of the code, and (b) shows the status of
the two machines after execution of the code.

Fig. 2. Morning scenario example in Ubiscript.

Journal of Computing Science and Engineering, Vol. 5, No. 2, June 2011. pp. 141-149

DOI: 10.5626/JCSE.2011.5.2.141 144 Minkyu Lee and Dongsoo Han

evaluated at runtime in the environment. To implement the re-
mote scope mechanism, we need to address two issues. One is
how to transmit the part of the code running in the runtime sys-
tem to the remote device, and the other one is how to deal with
the variables declared in local environment but referenced by the
code running in a remote device such as the variable x in Fig. 1.

Since Ubiscript is an interpreting language, an abstract syntax
tree (AST) is constructed from the program and then each node
is visited and evaluated one by one by traversing the tree. On
visiting an on block node in the traversing, the child nodes are
transformed into the original source text and then the encoded
source text is sent to the remote device at runtime. The execution
is suspended until the execution of source text sent to the remote
device is finished.

However there still remains a problem. Recall the example
illustrated in Fig. 1. The statement “x = y + z” inside the on block
is encoded and sent to machine B, and then the statement is de-
coded and executed in the environment p. The variable x is used
in the statement but the variable with name x is not reserved in
environment p. It is natural to consider that variable x refers to
the one in machine A. To realize this, all the free variables of the
statements in an on block should be converted to network refer-
ences, and encoded together with the statements. The machine
receiving the encoded codes and network references, decodes
the network references for the variables that are not declared in
its environment. In the case of Fig. 1, variable x, y and z are con-
verted to network references and transmitted, but only variable
x is activated in the environment p because variable y and z are
declared in the environment. After the transmission phase, the
transmitted statements are evaluated in the environment.

C. Multiple Contexts

The devices embedded in our life environment are not used
only for a single purpose. The television can not only be used to
watch TV programs, but also it can be used for security, health-
care, entertainment, etc. The display on a refrigerator can show
the expiration dates of foodstuffs, and it also can be used for an
announcement board for family members. That is, the utiliza-
tion of a device changes according to applications in ubiquitous
environment. So a device should support multiple utilization
purposes. Moreover different utilization purposes may require
different trust levels. The refrigerator should be protected from
applications that have permissions only on showing simple in-
formation on the display, accessing to the information of the
foodstuffs inside. Different security policies are needed to be
flexibly specified in each specification of utilization purpose for
a device.

In order to support multiple utilization purposes for a de-
vice, Ubiscript language provides facilities to support multiple
contexts. A context is used to specify a utilization purpose. A
context has a unique path name, its own security policy, and
properties. The elements of a security policy are summarized
in the below:

1) Authentication: It qualifies the applications allowed to ac-
cess to the context by defining the accounts. Each account
has username and password. It should be delivered to the
developers of the qualified applications.

2) Authorization: It manages the objects that are allowed to

access from the qualified applications. Ubiscript can load
the libraries selectively which contains various objects at
runtime. We can restrict the libraries that can be loaded by
the applications.

3) Firewalling: It restricts accesses from external hosts ac-
cording to domain patterns. This approach allows the ac-
cesses only from the designated hosts, so it can prevent
access to secure devices from the applications of unidenti-
fied hosts.

Besides, restricting session count and logging for the trans-
mitted execution code can augment safety of each device.

An example context definition for a television is presented
in Fig. 3. While the “/sandbox” context is configured to prevent
damages from any application, the “/full” context is configured
to allow accession from the applications with only full privi-
leges. Since the “/inform” context is configured to permit acces-
sion only to standard and GUI objects, it is not allowed to read
information of the television, or to access to memory or file, or
to make network connections. The “/vendor” context is config-
ured for the vendor of the television, so only the applications on
vendor’s IP addresses are allowed.

D. Web and Legacy Objects

Many useful services published in web and UPnP services
are implemented as web services based on simple object access
protocol (SOAP) protocol. If one wants to call a Web Service in
system programming languages such as C++ or Java, we need to
generate a stub from WSDL or write a bunch of marshalling and
unmarshalling code manually. In addition, there are many legacy
services written in Java or ActiveX. Jini services are written in
Java and most of components in Windows platform are written
in COM/ActiveX. In order to support dynamic interoperation

Fig. 3. An example of multiple contexts for a television.

Ubiscript: A Script Language for Ubiquitous Environment

145 http://jcse.kiise.orgMinkyu Lee and Dongsoo Han

the security requirement to some degree. Each context has its
own accessible objects with a security policy pertaining to the
context, and thus the objects are protected from the applications
missing a permission to access to the context.

IV. IMPLEMENTATION

Ubiscript runtime system (i.e., Ubiscript interpreter) is writ-
ten in Java language, so we can deploy the system on any devices
as long as Java Virtual Machine (JVM) is available. Prior to the
execution of a program written in Ubiscript, the runtime system
should be installed on the device where the program to be exe-
cuted, and the devices specified by place objects of the program.
HTTP GET/POST protocol is used for the transmission of the
commands and program texts, and ANTLR parser generator tool
[9] is used in implementing the parser for Ubiscript language.

Meanwhile, the runtime system provides five core commands
in the below:

GET_SESSION: This command requires a context path name as
an input parameter. It returns a reference to a new session for
a specified context.
EXECUTE_CODE: This command requires a session reference,
encoded program text to be executed, and encoded network
variables for input parameters. It returns the result of the ex-
ecution of the program text. If an exception is raised, the ex-
ception is propagated to the sender at runtime.
GET_VALUE: This command requires a session reference and a
network variable to be read. It returns the value of the net-
work variable.
PUT_VALUE: This command requires a session reference and a
network variable to be modified. It returns a result of modi-
fication of the variable. If some problem occurred to modify
the variable, it propagates an exception.
PROCEDURE_CALL: This command requires a session reference,
a reference to a function, and marshaled arguments. It calls
the function with the arguments, and returns the result. If an
exception is raised during the function call, the exception is
propagated to the caller runtime system.
In order to execute a program text at runtime, at first, the run-

time system invokes GET_SESSION command to get a reference to
a session, and EXECUTE_CODE command is applied to the program
text with the reference of the session. Then, the runtime system
parses the program text and constructs an AST, and executes
nodes in the AST while traversing the AST. On visiting an on
block in the traversing, call GET_SESSION and EXECUTE_CODE com-
mand to execute the statements in the block on the remote ma-
chine specified in the place object of the on block. The runtime
system restores the network variables on the session’s environ-
ment, parses and executes the program text received through EX-
ECUTE_CODE command. During the program execution three kinds
of cases may occur. The first case is reading values of network
variables. GET_VALUE command is used to read the network vari-
ables. The second case is writing values to network variables.
PUT_VALUE command is used to write values the network vari-
ables. The last case is calling functions referenced by network
variables. PROCEDURE_CALL command is used to call remote func-
tions on the runtime system with arguments to be passed, and to
receive the result of the function call and continue the execution.

with those services, Ubiscript provides three kinds of objects.
They are WebObject, JavaObject, and ActiveXObject. Each object
can be created by a constructor and accessed in the same way as
a plain Ubiscript object.

E. Remote Exception Handling

When a particular device fails during the execution of a task,
the task is usually performed by substituting an alternative de-
vice for the failed device. To support this, we provide a means
to catch and handle an exception raised from a remote device. In
Ubiscript, the catching and handling exceptions raised inside of
mobile code to be executed in a different device is specified in
the following way:

In the above code, the statement inside on block is executed
in p environment of a particular device. When an exception is
raised during the execution of the doSomething() statement, the
exception e is propagated to the original device via network and
handled in the original device.

F. Thread Object

Ubiscript provides a basic thread object and the usage of
thread object is the same as that of other thread-enabled lan-
guages such as Java. We can specify asynchronous tasks by sim-
ply mixing thread object and remote scope like the code in the
below:

G. Design Rationale

We developed Ubiscript’s key features to satisfy the require-
ments of script languages for developing ubiquitous applications.
For example, the notion of remote scope effectively achieves the
design goals like code mobility, distributed logic, failure han-
dling, and concurrency. The remote scope mechanism enables
us to specify the logics of incorporating services and program-
mable devices in a single program text. That is, it achieves code
mobility and distributed logic requirements. In addition, we can
mix the remote scope with conventional thread model and ex-
ception handling mechanism to achieve concurrency and failure
handling requirements in ubiquitous environment. Due to web
and legacy objects, we can dynamically access service objects
without gene-rating any stub codes or writing mashalling codes
manually to meet the dynamic service invocation requirements.
Multiple contexts, which allow programmers to specify differ-
ent security policies for contexts in various environments, meet

Journal of Computing Science and Engineering, Vol. 5, No. 2, June 2011. pp. 141-149

DOI: 10.5626/JCSE.2011.5.2.141 146 Minkyu Lee and Dongsoo Han

V. EXAMPLE APPLICATIONS

A. UbiCafe

When a customer carrying a mobile device (smart phone,
personal digital assistant [PDA], or laptop, etc.) enters a self-
service cafe, an application for the cafe is automatically sent to
and executed on the customer’s mobile device. The application
shows a menu for coffee and waits for orders. The barista of the
café can check the orders through a desktop computer in the
café, and can notify to the customers when the order is ready.
The notification dialog is pop up on the customer’s mobile de-
vice, and then the customer picks up his/her coffee.

We implemented the UbiCafe application described above
by using Ubiscript language on the runtime system. Firstly, we
adopted radio-frequency identification (RFID) technology to
recognize when the customer’s mobile device enters into a cafe.
RFID tags are attached to the tables in the café and the RFID
reader is linked to the customer’s mobile device. The customer’s
mobile device prototype and graphical user interface are pre-
sented in Fig. 4. The UbiCafe application is executed on the mo-
bile device when a customer brings the RFID reader, connected
to the mobile device, close to the RFID tags. Since memory re-

sources of the tag is limited to store the UbiCafe application, the
application is placed in a separated application server and only
the unique ID of the application is stored in the tag. The mobile
device reads the application ID from the tag and connects to the
application server for the download of UbiCafe application to be
executed on it. The graphical user interface of UbiCafe applica-
tion is fully written in Ubiscript. Without Ubiscript, we have to
install a particular mobile agent middleware to a mobile device
and implement the UbiCafe application as a mobile agent which
is capable for presenting graphical user interfaces and interoper-
ating with web services. That is not easy work, but we have done
it simply in a single source text by a short scripting.

B. Smart Presenter

When somebody wants to make a presentation, either the
notebook of the person must be connected to a projector by a
cable or the presentation file must be stored into the computer
to which the projector is already connected. Downloading the
file from the Internet could be another way for this. Now sup-
pose that there are many presenters, it is very inconvenient and
cumbersome. Smart Presenter provides several functionalities
for this situation. The first function is to enable presentation

Fig. 4. UbiCafe application. The left picture is hardware prototype of customer’s mobile device for UbiCafe application, and the right snapshot is a graphi-
cal user interface for a customer.

Fig. 5. Snapshots of Smart Presenter implemented on a smart room. The left picture shows a presentation situation and the right picture shows a situation
that a presenter approximate the whiteboard.

Ubiscript: A Script Language for Ubiquitous Environment

147 http://jcse.kiise.orgMinkyu Lee and Dongsoo Han

without cable connection, file copy, or even file download. The
second function is that it automatically adjusts brightness of the
light in the meeting room. When the presentation is started, the
illumination of the room is decreased and when the presentation
is finished, the illumination is increased automatically. The final
function is detecting the presenter’s location so that the light
for a whiteboard automatically turned-on when the presenter ap-
proaches the whiteboard.

We implemented this scenario in an experimental smart room
which has various sensors, devices and a context server as pre-
sented in Fig. 5. The context server collects context informa-
tion from installed various sensors. When a particular event or
situation is detected based on context information, the context
server executes a specific task such as turning-on the lights or
decreasing volume of the television. For this context-awareness
capability, we adopted a context-aware middleware Active Sur-
roundings [10]. In order to implement Smart Presenter scenario
on an existing context-server, we identified two major situations
that can be detected by sensors in the room. Those are when
a presentation is started and when a presenter approaches the
whiteboard. When a presenter started a presentation by using
his or her laptop, the presentation slides should be casted on the
screen through the projector in the room and the lights on room
should be turned off. When a presenter approaches the white-
board during a presentation, the light on the top of whiteboard
area should be turned on.

We implemented the task part of the two situations in
Ubiscript. The situations are decided by the context-aware mid-
dleware, and then the middleware triggers the task scripts. The
task script for the first situation creates a Power Point object in
the PC connected to the projector and then opens a presentation
file in the presenter’s remote laptop and invokes a Web Service
to turn off the lights in the room.

VI. RELATED WORK

Some languages have been developed for ubiquitous comput-
ing or applications. Indus [11] is an object-oriented language
for ubiquitous computing. It provides concurrently executing
agents and coordination to support development of ubiquitous
applications. Indus tries to address similar issues of this paper,
but it differs from our work in the following aspects. Indus is de-
veloped based on agent and coordination models so a developer
has to learn about the models of agent and coordination, while
Ubiscript doesn’t require any agent and coordination models
so a developer can learn faster and easier. Note that Ubiscript
is a script language. Moreover, Indus compiles to native code
at compile-time, on the other hand Ubiscript interprets code at

runtime. In that sense, Ubiscript is competitive in rapid devel-
opment situations against Indus. There are languages dealing
with different issues from those of Ubiscript. ContextL [12],
context-oriented programming (COP) [13] and context-aware
aspect [14] propose languages or language features for context-
oriented programming. They developed mechanisms to separate
context-dependent codes from a program. By doing so, a de-
veloper can easily add and manage codes for new context and
context-awareness. Since the issues they are dealing with are
completely different from ours, our work can be compensation
for theirs and vice versa.

Remote scope is one of the key notions and mechanisms
developed for Ubiscript language. Remote scope is based on
mobile code technology [8] in which a program code is sent to
across a network and executed on remote machines. Telescript
[15] and AgentTCL [16] are good cases supporting code mo-
bility. The mobile code is natural to ubiquitous computing that
requires dynamic discovery and integration of distributed de-
vices. Mobile agent is a kind of the mobile code technology and
there are several works [17, 18] adopting mobile code for ubiq-
uitous environment. However, Ubiscript takes a language-based
approach for code mobility. There are two similar approaches
to the mechanism of remote scope. Remote evaluation (REV)
[19] supports the evaluation of a procedure in remote machine
by remote evaluation. For this, the procedure to be evaluated
in a remote machine is transmitted to the remote machine with
arguments via network. Then the procedure is evaluated and the
result is sent back. If the procedure has free variables, the free
variables are provided in the remote machine or those are elimi-
nated by expanding code portion to be transmitted. The second
one is distributed scope of Obliq [20] language. Obliq provides a
traditional remote procedure call model except that a procedure
can be passed as an argument of a remote procedure to support
mobile computation [21]. The arguments for the migrated pro-
cedure are provided inside of the remote procedure. If the pro-
cedure has free variables, the variables are converted to network
references and transmitted with the procedure. It is called as clo-
sure mobility. In the Ubiscript, a block is transmitted rather than
a procedure and the free variables are bound through a look-
up-chain at runtime. We call it lookup-chain mobility in which
we try to find the free variables in the remote machine first and
then find in the original. Remote scope mechanism is quite use-
ful in ubiquitous environment because multiple programmable
devices can be easily coordinated and some resources can be
shared among them through remote scope. In REV, it is difficult
to share a resource among mobile codes because arguments for
a procedure to be transmitted are also encoded to be transmitted
to a remote machine. In Obliq, it is difficult to write multiple
mobile codes in a single source text because arguments for a

Table 1. A comparison on code mobility mechanisms of Obliq, remote evaluation (REV), and Ubiscript

Ubiscript REV Obliq

Terminology Remote scope Remote evaluation Distributed scope

Unit of mobility Block Procedure Procedure

Free variable binding policy Lookup-chain mobility Closed-code mobility Closure mobility

Contents to be transmitted Block + lookup-chain Code portion + arguments Closure (procedure + references to free variables)

Journal of Computing Science and Engineering, Vol. 5, No. 2, June 2011. pp. 141-149

DOI: 10.5626/JCSE.2011.5.2.141 148 Minkyu Lee and Dongsoo Han

procedure to be transmitted should be provided in a remote ma-
chine manually. A comparison on mobile code mechanisms are
summarized in Table 1.

VII. DISCUSSION

Ubiscript is not a full-fledged language to cover all the re-
quirements for ubiquitous applications but an experimental
language to test the effectiveness of the new language features
proposed in the language. Firstly, Ubiscript is useful in script-
ing actions associated with contexts in context-aware applica-
tions as illustrated in the example of Smart Presenter. Although
a context-aware middleware is capable of collecting context
information and reasoning specific situations, but an action trig-
gered by the change of context should be written in a specific
programming language. Ubiscript is appropriate in specifying
actions associated with the change of context because the ac-
tions are mostly specified by interoperating and coordinating
various services and devices. Ubiscript is also appropriate for
the control of programmable devices. Simple devices such as
a light, a clock, a door-lock can be controlled by calling proce-
dures. However complex devices such as a television, a naviga-
tion system, a refrigerator require a separate and well-equipped
control language. Since the devices usually have own processor
and network capability, Ubiscript interpreter can be embedded
in the device.

VIII. CONCLUSION

Ubiquitous applications integrate services on distributed and
heterogeneous devices in ubiquitous computing environments.
However conventional general purpose script languages have
limitations to support various kinds of interoperation. In this pa-
per, we have proposed a script language Ubiscript suitable for
ubiquitous environment. It incorporates several language fea-
tures such as remote scope, multiple contexts, remote exception
handling, concurrency to overcome the limitations of current
conventional script languages such as Tcl, Perl, Javascript, in
the context of ubiquitous computing. By implementing experi-
mental ubiquitous applications UbiCafe and Smart Presenter, we
confirmed that the language dramatically reduces development
time and efforts, so we can conclude it is much more suitable for
ubiquitous environments than conventional script languages and
system programming languages.

REFERENCES

1.	 M. Weiser, “The computer for the 21st century,” Scientific Ameri-
can, vol. 265, no. 3, pp. 94-104, Sep. 1991.

2.	 B. A. Miller, T. Nixon, C. Tai, and M. D. Wood, “Home networking
with universal plug and play,” IEEE Communications Magazine,
vol. 39, no. 12, pp. 104-109, Dec. 2001.

3.	 K. Arnold, The Jini Specification, Reading, MA: Addison Wesley,

1999.
4.	 E. Guttman, “Service location protocol: automatic discovery of IP

network services,” IEEE Internet Computing, vol. 3, no. 4, pp. 71-
80, Jul./Aug. 1999.

5.	 ECMA General Assembly, ECMAScript Language Specification,
3rd ed., Standard ECMA-262, 1999.

6.	 G. Banavar and A. Bernstein, “Software infrastructure and design
challenges for ubiquitous computing applications,” Communica-
tions of the ACM, vol. 45, no. 12, pp. 92-96, Dec. 2002.

7.	 D. A. Watt and W. Findlay, Programming Language Design Con-
cepts, Hoboken, NJ: John Wiley & Sons, 2004.

8.	 A. Fuggetta, G. P. Picco, and G. Vigna, “Understanding code mobil-
ity,” IEEE Transactions on Software Engineering, vol. 24, no. 5, pp.
342-361, May. 1998.

9.	 T. Parr, The Definitive ANTLR Reference: Building Domain-Spe-
cific Languages, Raleigh, NC: Pragmatic Bookshelf, 2007.

10.	 D. Lee, “Active surroundings: a group-aware middleware for em-
bedded application systems,” Proceedings of the 28th Annual In-
ternational Computer Software and Applications Conference, Hong
Kong, China, 2004, pp. 404-405.

11.	 K. Borah, “Indus: an object oriented language for Ubiquitous com-
puting,” ACM SIGPLAN Notices, vol. 41, no. 2, pp. 18-24, Feb.
2006.

12.	 P. Costanza and R. Hirschfeld, “Language constructs for context-
oriented programming: an overview of ContextL,” Proceedings of
the Dynamic Languages Symposium, San Diego, CA, 2005.

13.	 R. Keays and A. Rakotonirainy, “Context-oriented programming,”
Proceedings of the 3rd ACM International Workshop on Data Engi-
neering for Wireless and Mobile Access, San Diego, CA, 2003, pp.
9-16.

14.	 E. Tanter, K. Gybels, M. Denker, and A. Bergel, “Context-aware as-
pects,” Software Composition, Lecture Notes in Computer Science,
vol. 4089, Heidelberg: Springer Berlin, pp. 227-242, 2006.

15.	 J. E. White, Telescript Technology: The Foundation for the Elec-
tronic Marketplace, White Paper, Sunnyvale, CA: General Magic
Inc., 1994.

16.	 D. Kotz, R. Gray, S. Nog, D. Rus, S. Chawaa, and G. Cybenko,
“Agent TCL: targeting the needs of mobile computers,” IEEE In-
ternet Computing, vol. 1, no. 4, pp. 58-67, Jul./Aug. 1997.

17.	 N. Hanssens, A. Kulkarni, R. Tuchida, and T. Horton, “Building
agent-based intelligent workspace,” Agents for Business Automa-
tion (ABA) Conference Proceedings, Las Vegas, NV, 2002, pp. 675-
681.

18.	 K. Kangas and J. Roning, “Using mobile code for service integra-
tion in ubiquitous computing,” Proceedings of the 5th Mobile Ob-
ject Systems Workshop, Lisbon, Portugal, 1999.

19.	 J. W. Stamos and D. K. Gifford, “Implementing remote evalua-
tion,” IEEE Transactions on Software Engineering, vol. 16, no. 7,
pp. 710-722, Jul. 1990.

20.	 L. Cardelli, “Language with distributed scope,” Proceedings of the
22nd ACM SIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languages, San Francisco, CA, 1995, pp. 286-297.

21.	 L. Cardelli, “Mobile omputation,” Mobile Object Systems Towards
the Programmable Internet, Lecture Notes in Computer Science,
vol. 1222, Heidelberg: Springer Berlin, pp. 1-6, 1997.

Ubiscript: A Script Language for Ubiquitous Environment

149 http://jcse.kiise.orgMinkyu Lee and Dongsoo Han

Minkyu Lee is a PhD student in computer science at the Korea Advanced Institute of Science and Technology (KAIST). His
research interests include location-based services, collective intelligence, and context-aware computing. He received
his master’s degree in information and communications engineering from the KAIST. Contact him at niklaus@kaist.ac.kr.

Minkyu Lee

Dongsoo Han is a professor in the Department of Computer Science at the KAIST. His research interests include mobile
computing, bioinformatics, and healthcare services. He received the PhD degree in the information science from the
Kyoto University in 1996. Contact him at dshan@kaist.ac.kr.

Dongsoo Han

