DOI QR코드

DOI QR Code

탄소나노튜브 적용 나노유체의 임계 열유속까지의 비등 열전달계수

Boiling Heat Transfer Coefficients of Nanofluids Containing Carbon Nanotubes up to Critical Heat Fluxes

  • 투고 : 2010.06.04
  • 심사 : 2011.04.20
  • 발행 : 2011.07.01

초록

본 연구에서는 순수 물에 탄소나노튜브를 분산시킨 나노유체를 작동유체로 하여 $60^{\circ}C$ 에서 정사각형 구리 평면 히터를 이용하여 핵 비등 열전달계수와 임계 열유속을 측정하였다. 탄소나노튜브의 체적비는 0.0001%, 0.001%, 0.01%까지 변화시켜 실험을 수행하였다. 탄소나노튜브는 고분자 물질을 사용하여 분산시키지 않고 탄소나노튜브에 직접 산화처리를 하여 분산시켰다. 실험 결과 나노유체의 열전달계수는 순수 물과 비교해 모든 체적비에서 증가하였다. 산화 처리를 한 탄소나노튜브는 비등이 일어나는 동안 열 경계층 안에서 열전도도가 큰 탄소나노튜브가 침착되지 않고 열전달 표면에 자주 접촉함으로써 열 경계층을 교란시켜 비등 열전달을 촉진시키는 것으로 사료된다. 임계 열유속은 체적비 0.001%에서 순수 물의 결과에 비해 150%까지 증가하였다. 이는 열전달 표면에서 탄소나노튜브가 매우 얇게 침착되어 생긴 나노 막으로 인해 거대한 기포막의 형성이 억제되고 핵 비등이 높은 열유속에서도 지속되어 임계 열유속이 증가하는 것으로 판단된다.

In this study, the nucleate pool boiling heat transfer coefficients (HTCs) and critical heat flux (CHF) for a smooth and square flat heater in a pool of pure water with and without carbon nanotubes (CNTs) dispersed at $60^{\circ}C$ were measured. Tested aqueous nanofluids were prepared using CNTs with volume concentrations of 0.0001%, 0.001%, and 0.01%. The CNTs were dispersed by chemically treating them with an acid in the absence of any polymers. The results showed that the pool boiling HTCs of the nanofluids are higher than those of pure water in the entire nucleate boiling regime. The acid-treated CNTs led to the deposition of a small amount of CNTs on the surface, and the CNTs themselves acted as heat-transfer-enhancing particles, owing to their very high thermal conductivity. There was a significant increase in the CHF- up to 150%-when compared to that of pure water containing CNTs with a volume concentration of 0.001%. This is attributed to the change in surface characteristics due to the deposition of a very thin layer of CNTs on the surface. This layer delays nucleate boiling and causes a reduction in the size of the large vapor canopy around the CHF. This results in a significant increase in the CHF.

키워드

참고문헌

  1. Eastman, J. A., Choi, S. U. S., Li, S., Thompson, L. J. and Lee, S., 1997, "Enhanced Thermal Conductivity Through the Development of Nano-Fluids," Proc., Symposium on Nanophase and Nanocomposite materials II, Materials Research Society, Boston, Vol. 457, pp. 3-11.
  2. Lee, S., Choi, S. U. S., Li, S. and Eastman, J. A., 1999, "Measuring Thermal Conductivity of Fluids Containing Oxide Nanoparticles," ASME Journal of Heat Transfer, Vol. 121, pp. 280-289. https://doi.org/10.1115/1.2825978
  3. Eastman, J. A., Choi, S. U. S. and Yu, W., 2001, "Anomalously Increased Effective Thermal Conductivity of Ethylene Glycol-based Nanofluids Containing Copper Nanoparticles," Applied Physic Letters, Vol. 78, pp. 718-720. https://doi.org/10.1063/1.1341218
  4. Das, S. K., Putra, N., Thiesem, P. and Roetzel, W., 2003, "Temperature Dependence of Thermal Conductivity Enhancement for Nanofluids," ASME Journal of Heat Transfer, Vol. 125, pp. 567-574. https://doi.org/10.1115/1.1571080
  5. You, S. M., Kim, J. H. and Kim, K. H., 2003, "Effect of Nanoparticles on Critical Heat Flux of Water in Pool Boiling Heat Transfer," Applied Physic Letters, Vol. 83, pp. 3374-3376. https://doi.org/10.1063/1.1619206
  6. Bang, I. C. and Chang, S. H., 2005, "Boiling Heat Transfer Performance and Phenomena of $Al_2O_3$-water Nano Fluids from a Plain Surface in a Pool," International Journal of Heat and Mass Transfer, Vol. 48, pp. 2407-2419. https://doi.org/10.1016/j.ijheatmasstransfer.2004.12.047
  7. Kim, S. J., Bang, I. C., Buongiorno, J. and Hu, L. W., 2007, "Surface Wettability Change during Pool Boiling of Nanofluids and its Effect on Critical Heat Flux," International Journal of Heat and Mass Transfer, Vol. 50, pp. 4105-4116. https://doi.org/10.1016/j.ijheatmasstransfer.2007.02.002
  8. Coursey, J. S. and Kim, J., 2008, "Nanofluid Boiling: The Effect of Surface Wettability," International Journal of Heat and Fluid Flow, Vol. 29, No. 6, pp. 1577-1585. https://doi.org/10.1016/j.ijheatfluidflow.2008.07.004
  9. Kim, H. D., Kim, J. and Kim, M. H., 2007, "Experimental Studies on CHF Characteristics of Nano-fluids at Pool Boiling," International Journal of Multiphase Flow, Vol. 33, pp. 691-706. https://doi.org/10.1016/j.ijmultiphaseflow.2007.02.007
  10. Xue, H. S., Fan, J. R., Hong, R. H. and Hu, Y. C., 2007, "Characteristic Boiling Curve of Carbon Nanotube Nanofluid as Determined by the Transient Calorimeter Technique," Applied Physics Letters, Vol. 90, 184107. https://doi.org/10.1063/1.2736653
  11. Park, K. J. and Jung, D., 2007, "Enhancement of Nucleate Boiling Heat Transfer Using Carbon Nanotubes," International Journal of Heat and Mass Transfer, Vol. 50, pp. 4499-4502. https://doi.org/10.1016/j.ijheatmasstransfer.2007.03.012
  12. Park, K. J., Jung, D. and Shim, S. E., 2009, "Nucleate Boiling Heat Transfer in Aqueous Solutions with Carbon Nanotubes up to Critical Heat Fluxes," International Journal of Multiphase Flow, Vol. 35, No. 6, pp. 525-532. https://doi.org/10.1016/j.ijmultiphaseflow.2009.02.015
  13. Ajayan, P. M., 1999, "Nanotubes from Carbon," Chemical Reviews, Vol. 99, pp. 1787-1799. https://doi.org/10.1021/cr970102g
  14. Dresselhaus, M. S., Dresselhaus, G. and Avouris, P., 2001, "Carbon Nanotubes: Synthesis, Structure, Properties and Applications," Eds.; Springer, New York, Vol. 80.
  15. Baughman, R. H., Zakhidov, A. A. and de Heer, W. A., 2002, "Carbon Nanotubes - the Route Toward Applications," Science, Vol. 297, p. 787. https://doi.org/10.1126/science.1060928
  16. Riggs, J. E., Guo, Z., Carroll, D. L. and Sun, Y. P., 2000, "Strong Luminescence of Solubilized Carbon Nanotubes," Journal of the American Chemical Society, Vol. 122, No. 24, pp. 5879-5880. https://doi.org/10.1021/ja9942282
  17. Ha, J. U., Kim, M., Lee, J., Choe, S., Cheong, I. W. and Shim, S. E., 2006, "A Novel Synthesis of Polymer Brush on Multiwall Carbon Nanotubes Bearing Terminal Monomeric Unit," Journal of Polymer Science: Part A: Polymer Chemistry, Vol. 44, pp. 6394-6401. https://doi.org/10.1002/pola.21738
  18. Georgakilas, V., Kordatos, K., Prato, M., Guldi, D. M., Holzinger, M. and Hirsch, A., 2002, "Organic Functionalization of Carbon Nanotubes," Journal of the American Chemical Society, Vol. 124, No. 5, pp. 760-761. https://doi.org/10.1021/ja016954m
  19. Kline, S. J. and McClintock, F. A., 1953, "Describing Uncertainties in Single-Sample Experiments," Mechanical Engineer, Vol. 75, pp 3-8.