DOI QR코드

DOI QR Code

Adenylyl Cyclases in Mycobacteria

마이코박테리아의 adenylyl cyclase

  • 전한승 (부산대학교 미생물학과) ;
  • 고인정 (KAIST 부설 한국과학영재학교) ;
  • 오정일 (부산대학교 미생물학과)
  • Received : 2011.02.17
  • Accepted : 2011.03.20
  • Published : 2011.03.30

Abstract

Adenylyl cyclase (AC) catalyzes the formation of cyclic AMP (cAMP) from ATP. The cAMP produced by AC serves as a secondary messenger in a variety of signal transduction pathways, and controls various cellular functions in many organisms. ACs can be grouped into six classes based on their primary amino acid sequences. Eukaryotes and mycobacteria contain only members of class III AC. The catalytic cyclase domains of class III AC are active as dimers: mammalian ACs, which are composed of a single polypeptide with two catalytic cyclase domains, form the active site as a result of intramolecular dimerization of the catalytic cyclase domains. In contrast, mycobacterial ACs function as homodimers, since their polypeptides contain a single catalytic cyclase domain. Six amino acids are required for the catalytic activity of class III AC - two aspartate residues, a lysine-aspartate pair and an arginine-asparagine pair. 16 ACs belonging to the class III were identified in Mycobacterium tuberculosis H37Rv, and their characteristics are reviewed.

Adenylyl cyclase (AC)는 ATP로부터 cAMP를 형성하는 반응을 촉매한다. AC에 의해 생산된 cAMP는 다양한 신호전달 경로에서 이차전달자로 사용되고 많은 종에서 다양한 세포기능을 조절한다. AC는 1차구조에 따라 6개의 그룹으로 나눌 수 있다. 진핵생물과 Mycobacterium 속에 속하는 세균에서는 class III에 속하는 AC만이 발견된다. Class III에 속하는 AC의 경우 catalytic cyclase 도메인이 dimer를 형성해야만 활성부위가 형성되고 활성을 가지게 된다. 포유류의 AC는 하나의 polypeptide에 2개의 catalytic cyclase 도메인을 가지고 있고, 이 두 개의 도메인이 intramolecular dimerization을 통해서 활성부위를 형성한다. 반면에 mycobacteria의 AC는 polypeptide에 한 개의 catalytic cyclase 도메인을 가지고 있고, homodimer의 4차구조를 형성하여 활성을 가지게 된다. Class III AC의 활성을 위해서 필요한 6개의 아미노산 잔기가 활성부위에 잘 보존되어 있다. 이 6개의 아미노산 잔기는 $Mg^{2+}$과 결합을 하는 2개의 aspartate 잔기쌍, 기질특이성을 부여하는 lysine-aspartate 잔기쌍, 그리고 반응 전이상태를 안정화시키는 arginine-asparagine 잔기쌍들로 이루어져 있다. Mycobacterium tuberculosis H37Rv에서는 16개의 AC 유전자가 발견되었으며, 이 AC의 연구된 특성에 대해 본 총설에서 다룰 것이다.

Keywords

References

  1. Abdel, M. A., I. Tews, J. E. Schultz, and J. U. Linder. 2006. Fatty acid regulation of adenylyl cyclase Rv2212 from Mycobacterium tuberculosis H37Rv. FEBS J. 273, 4219-4228. https://doi.org/10.1111/j.1742-4658.2006.05420.x
  2. Agarwal, N., G. Lamichhane, R. Gupta, S. Nolan, and W. R. Bishai. 2009. Cyclic AMP intoxication of macrophages by a Mycobacterium tuberculosis adenylate cyclase. Nature 460, 98-102. https://doi.org/10.1038/nature08123
  3. Anes, E., P. Peyron, L. Staali, L. Jordao, M. G. Gutierrez, H. Kress, M. Hagedorn, I. Maridonneau-Parini, M. A. Skinner, A. G. Wildeman, S. A. Kalamidas, M. Kuehnel, and G. Griffiths. 2006. Dynamic life and death interactions between Mycobacterium smegmatis and J774 macrophages. Cell Microbiol. 8, 939-960. https://doi.org/10.1111/j.1462-5822.2005.00675.x
  4. Antoni, F. A. 2000. Molecular diversity of cyclic AMP signalling. Front Neuroendocrinol. 21, 103-132. https://doi.org/10.1006/frne.1999.0193
  5. Baillie, L. and T. D. Read. 2001. Bacillus anthracis, a bug with attitude! Curr. Opin. Microbiol. 4, 78-81. https://doi.org/10.1016/S1369-5274(00)00168-5
  6. Baker, D. A. and J. M. Kelly. 2004. Structure, function and evolution of microbial adenylyl and guanylyl cyclases. Mol. Microbiol. 52, 1229-1242. https://doi.org/10.1111/j.1365-2958.2004.04067.x
  7. Botsford, J. L. and J. G. Harman. 1992. Cyclic AMP in prokaryotes. Microbiol. Rev. 56, 100-122.
  8. Buck, J., M. L. Sinclair, L. Schapal, M. J. Cann, and L. R. Levin. 1999. Cytosolic adenylyl cyclase defines unique signaling molecule in mammals. Proc. Natl. Acad. Sci. USA 96, 79-84. https://doi.org/10.1073/pnas.96.1.79
  9. Cann, M. J., A. Hammer, J. Zhou, and T. Kanacher. 2003. A defined subset of adenylyl cyclases is regulated by bicarbonate ion. J. Biol. Chem. 278, 35033-35038. https://doi.org/10.1074/jbc.M303025200
  10. Castro, L. I., C. Hermsen, J. E. Schultz, and J. U. Linder. 2005. Adenylyl cyclase Rv0386 from Mycobacterium tuberculosis H37Rv uses a novel mode for substrate selection. FEBS J. 272, 3085-3092. https://doi.org/10.1111/j.1742-4658.2005.04722.x
  11. Chaloupka, J. A., S. A. Bullock, V. Iourgento, L. R. Levin, and J. Buck. 2006. Autoinhibitory regulation of soluble adenylyl cyclase. Mol. Reprod. Dev. 73, 361-368. https://doi.org/10.1002/mrd.20409
  12. Cotta, M. A., T. R. Whitehead, and M. B. Wheeler. 1998. Identification of a novel adenylate cyclase in the ruminal anaerobe, Prevotella ruminicola D31d. FEMS Microbiol. Lett. 164, 257-260. https://doi.org/10.1111/j.1574-6968.1998.tb13095.x
  13. Gallagher, D. T., N. N. Smith, S. K. Kim, A. Heroux, H. Robinson, and P. T. Reddy. 2006. Structure of the class IV adenylyl cyclase reveals a novel fold. J. Mol. Biol. 362, 114-122. https://doi.org/10.1016/j.jmb.2006.07.008
  14. Guo, Y. L., U. Kurz, A. Schultz, J. U. Linder, D. Dittrich, C. Keller, S. Ehlers, P. Sander, and J. E. Schultz. 2005. Interaction of Rv1625c, a mycobacterial class IIIa adenylyl cyclase, with a mammalian congener. Mol. Microbiol. 57, 667-677. https://doi.org/10.1111/j.1365-2958.2005.04675.x
  15. Guo, Y. L., T. Seebacher, U. Kurz, J. U. Linder, and J. E. Schultz. 2001. Adenylyl cyclase Rv1625c of Mycobacterium tuberculosis: a progenitor of mammalian adenylyl cyclases. EMBO J. 20, 3667-3675. https://doi.org/10.1093/emboj/20.14.3667
  16. Kalamidas, S. A., M. P. Kuehnel, P. Peyron, V. Rybin, S. Rauch, O. B. Kotoulas, M. Houslay, B. A. Hemmings, M. G. Gutierrez, E. Anes, and G. Griffiths. 2006. cAMP synthesis and degradation by phagosomes regulate actin assembly and fusion events: consequences for mycobacteria. J. Cell Sci. 119, 3686-3694. https://doi.org/10.1242/jcs.03091
  17. Kataoka, T., D. Broek, and M. Wigler. 1985. DNA sequence and characterization of the Sachharomyces cerevisiae gene encoding adenylate cyclase. Cell 43, 493-505. https://doi.org/10.1016/0092-8674(85)90179-5
  18. Kido, M., F. Shima, T. Satoh, T. Asato, K. Kariya, and T. Kataoka. 2002. Critical function of the Ras-associating domain as a primary Ras-binding site for regulation of Saccharomyces cerevisiae adenylyl cyclase. J. Biol. Chem. 277, 3117-3123. https://doi.org/10.1074/jbc.M109526200
  19. Kobayashi, M., J. Buck, and L. R. Levin. 2004. Conservation of functional domain structure in bicarbonate-regulated soluble adenylyl cyclases in bacteria and eukaryotes. Dev. Genes Evol. 214, 503-509.
  20. Krupinski, J., F. Coussen, H. A. Bakalyar, W. J. Tang, P. G. Feinstein, K. Orth, C. Slaughter, R. R. Reed, and A. G. Gilman. 1989. Adenylyl cyclase amino acid sequence: possible channel- or transporter-like structure. Science 244, 1558-1564. https://doi.org/10.1126/science.2472670
  21. Ladant, D. and A. Ullmann. 1999. Bordetella pertussis adenylate cyclase: a toxin with multiple talents. Trends Microbiol. 7, 172-176. https://doi.org/10.1016/S0966-842X(99)01468-7
  22. Linder, J. U., A. Schultz, and J. E. Schultz. 2002. Adenylyl cyclase Rv1264 from Mycobacterium tuberculosis has an autoinhibitory N-terminal domain. J. Biol. Chem. 277, 15271-15276. https://doi.org/10.1074/jbc.M200235200
  23. Linder, J. U. and J. E. Schultz. 2003. The class III adenylyl cyclases: multi-purpose signalling modules. Cell Signal. 15, 1081-1089. https://doi.org/10.1016/S0898-6568(03)00130-X
  24. Linder, J. U., A. Hammer, and J. E. Schultz. 2004. The effect of HAMP domains on class IIIb adenylyl cyclases from Mycobacterium tuberculosis. Eur. J. Biochem. 271, 2446-2451. https://doi.org/10.1111/j.1432-1033.2004.04172.x
  25. Linder, J. U. 2005. Substrate selection by class III adenylyl cyclases and guanylyl cyclases. IUBMB Life 57, 797-803. https://doi.org/10.1080/15216540500415636
  26. Linder, J. U. 2006. Class III adenylyl cyclases: molecular mechanisms of catalysis and regulation. Cell Mol. Life Sci. 63, 1736-1751. https://doi.org/10.1007/s00018-006-6072-0
  27. Lowrie, D. B., V. R. Aber, and P. S. Jackett. 1979. Phagosome-lysosome fusion and cyclic adenosine 3':5'-monophosphate in macrophages infected with Mycobacterium microti, Mycobacterium bovis BCG or Mycobacterium lepraemurium. J. Gen. Microbiol. 110, 431-441. https://doi.org/10.1099/00221287-110-2-431
  28. Mock, M., E. Labruyere, P. Glaser, A. Danchin, and A. Ullmann. 1988. Cloning and expression of the calmodulin-sensitive Bacillus anthracis adenylate cyclase in Escherichia coli. Gene 64, 277-284. https://doi.org/10.1016/0378-1119(88)90342-3
  29. Patel, T. B., Z. Du, S. Pierre, L. Cartin, and K. Scholich. 2001. Molecular biological approaches to unravel adenylyl cyclase signaling and function. Gene 269, 13-25. https://doi.org/10.1016/S0378-1119(01)00448-6
  30. Reddy, S. K., M. Kamireddi, K. Dhanireddy, L. Young, A. Davis, and P. T. Reddy. 2001. Eukaryotic-like adenylyl cyclases in Mycobacterium tuberculosis H37Rv: cloning and characterization. J. Biol. Chem. 276, 35141-35149. https://doi.org/10.1074/jbc.M104108200
  31. Roy, A., A. Danchin, E. Joseph, and A. Ullmann. 1983. Two functional domains in adenylate cyclase of Escherichia coli. J. Mol. Biol. 165, 197-202. https://doi.org/10.1016/S0022-2836(83)80251-4
  32. Shenoy, A. R., N. P. Sreenath, M. Mahalingam, and S. S. Visweswariah. 2005. Characterization of phylogenetically distant members of the adenylate cyclase family from mycobacteria: Rv1647 from Mycobacterium tuberculosis and its orthologue ML1399 from M. leprae. Biochem. J. 387, 541-551. https://doi.org/10.1042/BJ20041040
  33. Shenoy, A. R., N. Sreenath, M. Podobnik, M. Kovacevic, and S. S. Visweswariah. 2005. The Rv0805 gene from Mycobacterium tuberculosis encodes a 3',5'-cyclic nucleotide phosphodiesterase: biochemical and mutational analysis. Biochemistry 44, 15695-15704. https://doi.org/10.1021/bi0512391
  34. Shenoy, A. R., A. Srinivas, M. Mahalingam, and S. S. Visweswariah. 2005. An adenylyl cyclase pseudogene in Mycobacterium tuberculosis has a functional ortholog in Mycobacterium avium. Biochimie 87, 557-563. https://doi.org/10.1016/j.biochi.2005.01.017
  35. Shenoy, A. R. and S. S. Visweswariah. 2006. Mycobacterial adenylyl cyclases: biochemical diversity and structural plasticity. FEBS Lett. 580, 3344-3352. https://doi.org/10.1016/j.febslet.2006.05.034
  36. Shenoy, A. R. and S. S. Visweswariah. 2006. New messages from old messengers: cAMP and mycobacteria. Trends Microbiol. 14, 543-550. https://doi.org/10.1016/j.tim.2006.10.005
  37. Sinha, S. C., M. Wetterer, S. R. Sprang, J. E. Schultz, and J. U. Linder. 2005. Origin of asymmetry in adenylyl cyclases: structures of Mycobacterium tuberculosis Rv1900c. EMBO J. 24, 663-673. https://doi.org/10.1038/sj.emboj.7600573
  38. Sismeiro, O., P. Trotot, F. Biville, C. Vivares, and A. Danchin. 1998. Aeromonas hydrophila adenylyl cyclase 2: a new class of adenylyl cyclases with thermophilic properties and sequence similarities to proteins from hyperthermophilic archaebacteria. J. Bacteriol. 180, 3339-3344.
  39. Sunahara, R. K. and R. Taussig. 2002. Isoforms of mammalian adenylyl cyclase: multiplicities of signaling. Mol. Interv. 2, 168-184. https://doi.org/10.1124/mi.2.3.168
  40. Tellez-Sosa, J., N. Soberón, A. Vega-Segura, M. E. Torres-Márquez, and M. A. Cevallos. 2002. The Rhizobium etli cyaC product: characterization of a novel adenylate cyclase class. J. Bacteriol. 184, 3560-3568. https://doi.org/10.1128/JB.184.13.3560-3568.2002
  41. Tews, I., F. Findeisen, I. Sinning, A. Schultz, J. E. Schultz, and J. U. Linder. 2005. The structure of a pH-sensing mycobacterial adenylyl cyclase holoenzyme. Science 308, 1020-1023. https://doi.org/10.1126/science.1107642
  42. Yahr, T. L., A. J. Vallis, M. K. Hancock, J. T. Barbieri, D. W. Frank, and Y. Exo. 1998. An adenylate cyclase secreted by the Pseudomonas aeruginosa type III system. Proc. Natl. Acad. Sci. USA 95, 13899-13904. https://doi.org/10.1073/pnas.95.23.13899

Cited by

  1. Expression of Adenylyl Cyclase Genes in Mycobacterium smegmatis under Hypoxic and Nitric Oxide Conditions vol.24, pp.12, 2014, https://doi.org/10.5352/JLS.2014.24.12.1330