DOI QR코드

DOI QR Code

붉은 털 원숭이의 뇌조직에서 CCDC94 유전자 대체 전사체의 분자적 분석

Molecular Analysis of Alternative Transcripts of CCDC94 Gene in the Brain Tissues of Rhesus Monkey

  • 윤세은 (부산대학교 생명과학과) ;
  • 안궁 (부산대학교 생명과학과) ;
  • 김희수 (부산대학교 생명과학과)
  • Yun, Se-Eun (Department of Biological Sciences, College of Natural Sciences, Pusan National University) ;
  • Ahn, Kung (Department of Biological Sciences, College of Natural Sciences, Pusan National University) ;
  • Kim, Heui-Soo (Department of Biological Sciences, College of Natural Sciences, Pusan National University)
  • 투고 : 2011.03.14
  • 심사 : 2011.03.17
  • 발행 : 2011.03.30

초록

붉은 털 원숭이의 유전체는 인간의 것과 93% 정도로 동일하여, 진화적 연구 및 생물의학적 연구에 널리 활용되고 있다. 숙주 개체 내로 가동성 유전인자(TEs)의 삽입은 유전자 전사체의 다양성과 발현양상을 다르게 만든다. 본 연구에서는 붉은 털 원숭이의 뇌 조직으로부터 만든 cDNA 라이브러리에서 112개 전사체를 동정하여 분석하였다. 하나의 전사체 R54는 인간과 원숭이의 다양한 조직에서 유전자 발현양상을 비교분석 해 본 결과 서로 다른 패턴을 보여 주었다. 이러한 현상은 가동성 유전인자인 L2A의 삽입으로 인한 스플라이싱 도너 사이트가 변화된 것으로 생각된다. 따라서, 영장류의 진화과정에 있어 유전체 내로 TEs의 삽입은 전사체의 다양성과 유전자 발현 조절에 변화를 주는 것으로 시사된다.

The genome of the rhesus monkey has diverged as an average sequence identity of ~93%. The rhesus monkey has been widely used as a non-human primate in the field of biomedical and evolutional research. Insertion of transposable elements (TEs) induced several events such as transcriptional diversity and different expression in host genes. In this study, 112 transcripts were identified from a full-length cDNA library of brain tissues of the rhesus monkey. One transcript (R54) showed a different expression pattern between human and rhesus monkey tissues. This phenomenon can be an explanation that R54 transcript was acquired by splicing a donor site derived from exonization of the L2A element. Therefore, integration of TEs during primate radiation could contribute to transcriptional diversity and gene regulation.

키워드

참고문헌

  1. Bannert, N. and R. Kruth. 2006. The evolutionary dynamics of human endogenous retroviral familes. Annu. Rev. Genomics Hum. Genet. 7, 149-173. https://doi.org/10.1146/annurev.genom.7.080505.115700
  2. Batzer, M. A. and P. L Deininger. 2002. Alu repeats and human genomic diversity. Nat. Rev. Genet. 3, 370-379. https://doi.org/10.1038/nrg798
  3. Blikstad, V., F. Benachenhou, G. O. Sperber, and J. Blomberg. 2008. Evolution of human endogenous retroviral sequences: a conceptual account. Cell Mol. Life Sci. 65, 3348-3365. https://doi.org/10.1007/s00018-008-8495-2
  4. Chimpanzee Sequencing and Analysis Consortium. 2005. Initial sequence of the chimpanzee genome and comparison with the human genome. Nature 437, 69-87. https://doi.org/10.1038/nature04072
  5. Depil, S., C. Roche, P. Dussart, and L. Prin. 2002. Expression of a human endogenous retrovirus, HERV-K, in the blood cells of leukemia patients. Leukemia 16, 254-259. https://doi.org/10.1038/sj.leu.2402355
  6. Dunn, C. A., L. N. van de Lagemaat, G. J. Baillie, and D. L. Mager. 2005. Endogenous retrovirus long terminal repeats as ready-to-use mobile promoters: the case of primate beta3GAL-T5. Gene 364, 2-12. https://doi.org/10.1016/j.gene.2005.05.045
  7. Flint, J., J. Rochette, C. F. Craddock, C. Dod, B. Vignes, S. W. Horsley, L. Kearney, V. J. Buckle, H. Ayyub, and D. R. Higgs. 1996. Chromosomal stabilisation by a subtelomeric rearrangement involving two closely related Alu elements. Hum. Mol. Genet. 5, 1163-1169. https://doi.org/10.1093/hmg/5.8.1163
  8. Gogvadze, E. and A. Buzdin. 2009. Retroelements and their impact on genome evolution and functioning. Cell Mol. Life Sci. 66, 3727-3742. https://doi.org/10.1007/s00018-009-0107-2
  9. Golub, M. S. 2010. Recent studies of iron deficiency during brain development in nonhuman primates. Biofactors 36, 111-116.
  10. Goodier, J. L. and H. H. Jr. Kazazian. 2008. Retrotransposons revisited: the restraint and rehabilitation of parasites. Cell 135, 23-35. https://doi.org/10.1016/j.cell.2008.09.022
  11. Hadjiargyrou, M., M. F. Halsey, W. Ahrens, E. P. Rightmire, K. J. McLeod, and C. T. Rubin. 1998. Cloning of a novel cDNA expressed during the early stages of fracture healing. Biochem. Biophys. Res. Commun. 249, 879-884. https://doi.org/10.1006/bbrc.1998.9167
  12. Hayreh, S. S. and J. B. Jonas. 2000. Ophthalmoscopic detectability of the parafoveal annular reflex in the evaluation of the optic nerve: an experimental study in rhesus monkeys. Ophthalmology 107, 1009-1014. https://doi.org/10.1016/S0161-6420(00)00074-9
  13. Hsu, C. H., Y. Zhang, and R. C. Hardison. 2010. An effective method for detecting gene conversion events in whole genomes. J. Comput. Biol. 17, 1281-1297. https://doi.org/10.1089/cmb.2010.0103
  14. Huang, J., T. Shi, T. Ma, Y. Zhang, X. Ma, Y. Lu, Q. Song, W. Liu, D. Ma, and X. Qiu. 2009. CCDC134, a novel secretory protein, inhibits activation of ERK and JNK, but not p38 MAPK. Breast Cancer Res. Treat. 113, 371-376. https://doi.org/10.1007/s10549-008-9933-4
  15. Huh, J. W., Y. H. Kim, D. S. Kim, S. J. Park, S. R. Lee, S. H. Kim, E. Kim, S. U. Kim, M. S. Kim, H. S. Kim, and K. T. Chang Kim. 2010. Alu-derived old world monkeys exonization event and experimental validation of the LEPR gene. Mol. Cells 30, 201-210. https://doi.org/10.1007/s10059-010-0108-x
  16. International Human Genome Sequencing Consortium. 2010. Initial sequencing and analysis of the human genome. Nature 409, 560-921.
  17. Rhesus Macaque Genome Sequencing and Analysis Consoritum. 2007. Evolutionary and biomedical insights from the rhesus macaque genome. Science 316, 222-234. https://doi.org/10.1126/science.1139247
  18. Johnstone, L. S., S. J. Graham, and M. A. Dziadek. 2010. STIM proteins: integrators of signalLung pathways in development, differentiation and disease. J. Cell Mol. Med. 14, 1890-1903. https://doi.org/10.1111/j.1582-4934.2010.01097.x
  19. Jurka, J. 2000. Repbase update: a database and an electronic journal of repetitive elements. Trends Genet. 16, 418-420. https://doi.org/10.1016/S0168-9525(00)02093-X
  20. Lai, F., C. X. Chen, K. C. Carter, and K. Nishikura. 1997. Editing of glutamate receptor B subunit ion channel RNAs by four alternatively spliced DRADA2 double-stranded RNA adenosine deaminases. Mol. Cell Biol. 17, 2413-2424.
  21. Landry, J. R. and D. L. Mager. 2003. Functional analysis of the endogernous retrovirol promoter of ger human ednothelin D receptor gene. J. Virol. 77, 7459-7766. https://doi.org/10.1128/JVI.77.13.7459-7466.2003
  22. Lin, L., P. Jiang, S. Shen, S. Sato, B. L. Davidson, and Y. Xing. 2009. Large-scale analysis of exonized mammalian-wide interspersed repeats in primate genomes. Hum. Mol. Genet. 18, 2204-2214. https://doi.org/10.1093/hmg/ddp152
  23. Locke, D. P. and et al. 2011. Comparative and demographic analysis of orang-utan genomes. Nature 469, 529-533. https://doi.org/10.1038/nature09687
  24. McClintock, B. 1950. The origin and behavior of mutable loci in maize. Proc. Natl. Acad. Sci. USA 36, 344-55. https://doi.org/10.1073/pnas.36.6.344
  25. Mersch, B., N. Sela, G. Ast, S. Suhai, and A. Hotz-Wagenblatt. 2007. SERpredict: detection of tissue- or tumor- specific isoforms generated through exonization of transposable elements. BMC Genet. 8, 78.
  26. Mills, R. E., E. A. Bennett, R. C. Iskow, and S. E. Devine. 2007. Which transposable elements areactive in the human genome? Trends Genet. 23, 183-191. https://doi.org/10.1016/j.tig.2007.02.006
  27. Modrek, B. and C. J. Lee. 2003. Alternative splicing in the human, mouse and rat genomes is associated with an increased frequency of exon creation and/or loss. Nat. Genet. 34, 177-180. https://doi.org/10.1038/ng1159
  28. Osorio, A., A. Barroso, M. J. Garca, B. Martnez-Delgado, M. Urioste, and J. Bentez. 1999. Evaluation of the BRCA1 interacting genes RAP80 and CCDC98 in familial breast cancer susceptibility. Breast Cancer Res. Treat 113, 371-376.
  29. Portis, J. L. 2002. Perspectives on the role of endogenous human retroviruses in autoimmune diseases. Virology 296, 1-5. https://doi.org/10.1006/viro.2002.1388
  30. Sin, H. S., J. W. Huh, K. Ahn, H. S. Ha, and H. S. Kim. 2007. Long terminal repeats of human endogenous retrovirus H family provide alternative polyadenylation signals to NADSYN1 gene. Korean J. Genet. 29, 395-401.
  31. Smith, C. W. and J. Valcarcel. 2000. Alternative pre-mRNA splicing: the logic of combinatorial control. Trends Biochem. Sci. 25, 381-388. https://doi.org/10.1016/S0968-0004(00)01604-2
  32. Sorek, R., R. Shamir, and G. Ast. 2004. How prevalent is functional alternative splicing in the human genome? Trends Genet. 20, 68-71. https://doi.org/10.1016/j.tig.2003.12.004