DOI QR코드

DOI QR Code

트레드밀 지구성 운동이 streptozotocin으로 유발된 당뇨 흰쥐의 뇌에서 PGC-1α, GLUT-1, Tfam 단백질 및 항산화 효소(Cu, Zn-SOD, Mn-SOD)의 발현량에 미치는 영향

Effect of Treadmill Exercise Training on the Expression of PGC-1α, GLUT-1, Tfam Proteins and Antioxydent Ezymes in Brain of STZ-Induced Diabetic Rats

  • 박노환 (한국체육대학교 운동생화학실) ;
  • 이진 (한양대학교 해부세포생물학실) ;
  • 정국현 (한국체육대학교 운동생화학실) ;
  • 최봉암 (대구대학교 골프학과) ;
  • 장형채 (한국체육대학교 운동생화학실) ;
  • 이석인 (중앙대학교 체육교육학과) ;
  • 이동수 (중앙대학교 체육교육학과) ;
  • 조준용 (한국체육대학교 운동생화학실)
  • Park, Noh-Hwan (Exercise Biochemistry Laboratory, Korea National Sport University) ;
  • Lee, Jin (Department of Anatomy and Cell Biology, Collage of Medicine, Han-Yang University) ;
  • Jung, Kook-Hyun (Exercise Biochemistry Laboratory, Korea National Sport University) ;
  • Choi, Bong-Am (Collage of Golf, Dae-Gu University) ;
  • Jang, Hyung-Chae (Exercise Biochemistry Laboratory, Korea National Sport University) ;
  • Lee, Suk-In (College of Physical Education, Chung-Ang University) ;
  • Lee, Dong-Soo (College of Physical Education, Chung-Ang University) ;
  • Cho, Joon-Yong (Exercise Biochemistry Laboratory, Korea National Sport University)
  • 투고 : 2011.01.10
  • 심사 : 2011.03.07
  • 발행 : 2011.03.30

초록

이 연구는 지구성 운동이 streptozotocin (STZ)으로 유발된 제 1형 당뇨 특징을 가진 쥐 뇌의 글루코스 운반, 미토콘드리아 기능 및 항산화효소 단백질 발현에 미치는 영향을 규명하는데 목적이 있다. 제 1형 당뇨 모델 쥐는 50 mg/kg의 streptozotocin을 수컷 Sprague-Dawley (SD) 흰쥐의 복강에 1회 주입하여 생산하였으며 본 실험 시집단은 NON-STZ 집단(n=8), STZ-CON 집단(n=8) 및 STZ-EXE 집단(n=8) 등 3집단으로 구분하여 실시하였다. 트레드밀 지구성 운동은 총 6주, 주 5일, 2주 간격으로 속도를 약 3~4 m/min으로 점증적으로 증가시켰으며 운동시간은 1주와 3주차에 10분씩 증가시켰다. 분석 결과 혈청 글루코스 수준은 STZ-EXE 집단은 STZ-CON 집단에 비해 현저하게 감소(p<0.05)하였으며 PGC-$1{\alpha}$ (p<0.001), mtPGC-$1{\alpha}$ (p<0.001), GLUT-1 (p<0.001), Tfam (p<0.001), Cu,Zn- SOD (p<0.001), Mn-SOD (p<0.01) 경우도 STZ-EXE 집단이 STZ-CON 집단에 비해 현저하게 증가하였다. 이러한 결과는 장기간 지구성 운동이 뇌의 글루코스 이용능력과 관련된 단백질인 GLUT-1과 미토콘드리아 기능 향상과 관련된 단백질인 PGC-$1{\alpha}$과 Tfam을 증가시키고 산화적 스트레스의 방어 기전으로서 역할을 수행하는 항산화 효소인 Cu,Zn-SOD와 Mn-SOD를 활성화시키는데 긍정적인 역할을 수행한 것으로 나타났다.

The purpose of this study is to identify the effects of exercise training [ET, 10~18 m/min (speed), 20~30 min (exercise duration)/a day for 5 day/wk, 6 wk) on PGC-$1{\alpha}$, GLUT-1, Tfam, Cu,Zn-SOD and Mn-SOD proteins in brain of STZ-induced diabetic rats. The male Sprague-Dawley (SD) rats were single-injected intraperitoneally with 50mg/kg of streptozotocin (STZ) to produce STZ-induced diabetic rats. Rats were divided into 3 experimental groups with 8 rats in each group, as follows: (1) non-STZ group (n=8), (2) STZ-CON group (n=8), (3) STZ-EXE group (n=8). The results of this study suggest that i) serum glucose level was significantly reduced in STZ-EXE group compared with STZ-CON group (p<0.05), ii) PGC-$1{\alpha}$ (p<0.001), mtPGC-$1{\alpha}$ (p<0.001), GLUT-1 (p<0.001), and mtTfam (p<0.001) proteins in brain of STZ-induced diabetic rats were significantly increased in STZ-EXE group compared with STZ-CON group, iii) Cu,Zn-SOD (p<0.001) and Mn-SOD (p<0.01) proteins in the STZ-induced diabetic rats were significantly increased in STZ-EXE group compared with STZ-CON group. In conclusion, the findings of the present study reveal that treadmill exercise training increases brain GLUT-1 protein level possibly through up-regulation of PGC-$1{\alpha}$ and Tfam proteins which represent key regulatory components of stimulation of brain mitochondrial biogenesis. In addition, treadmill exercise training may prevent oxidative stress by up-regulation of Cu,Zn-SOD and Mn-SOD proteins in the STZ-induced diabetic rats.

키워드

참고문헌

  1. Anabela, P. R. and M. P. Carlos. 2006. Diabetes and mitochondrial function: Role of hyperglycemia and oxidative stress. Toxicol. Appl. Pharmacol. 212, 167-178. https://doi.org/10.1016/j.taap.2006.01.003
  2. Atonetti, D. A., C. Reynet, and C. R. Kahn. 1995. Increased expression of mitochondrial-encoded genes in skeletal muscle of humans with diabetes millitus. J. Clin. Invest. 95, 1383-1388. https://doi.org/10.1172/JCI117790
  3. Baar, K., A. R. Wende, T. E. Jones, M. Marison, L. A. Nolte, M. Chen, D. P. Kelly, and J. O. Holloszy. 2002. Adaptations of skeletal muscle to exercise: rapid increase in the transcriptional coactivator PGC-1. FASEB. J. 16, 1879-1886. https://doi.org/10.1096/fj.02-0367com
  4. Beauquis, J., P. Roig, F. Homo-Delarche, A. De Nicola, and F. Saravia. 2006. Reduced hippocampal neurogenesis and number of hilar neurones in streptozotocin-induced diabetic mice: reversion by antidepressant treatment. Eur. J. Neurosci. 23, 1539-1546. https://doi.org/10.1111/j.1460-9568.2006.04691.x
  5. Bossy-Wetzel, E., M. J. Barsoum, A. Godzik, R. Schwarzenbacher, and S. A. Lipton. 2003. Mitochondrial fission in apoptosis, neurodegeneration and aging. Curr. Opin. Cell Biol. 15, 706-716. https://doi.org/10.1016/j.ceb.2003.10.015
  6. Bradford, M. M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochem. 72, 248-254. https://doi.org/10.1016/0003-2697(76)90527-3
  7. Ceriello, A. 2000. Oxidative stress and glycemic regulation. Metabolism 49, 27-29. https://doi.org/10.1016/S0026-0495(00)80082-7
  8. Cotman, C. W. and C. Engesser-Cesar. 2002. Exercise enhances and protects brain function. Exerc. Sport Sci. Rev. 30, 75-79. https://doi.org/10.1097/00003677-200204000-00006
  9. Daniel, P. K. and C. S. Richard. 2004. Transcriptional regulatory circuits controlling mitochondrial biogenesis and function. Genes Dev. 18, 357-368. https://doi.org/10.1101/gad.1177604
  10. De Moraes, C., A. P. Davel, L. V. Rossoni, E. Antunes, and A. Zanesco. 2008. Exercise training improves relaxation response and SOD-1 expression in aortic and mesenteric rings from high caloric diet-fed rats. BMC Physiol. 8, 12. https://doi.org/10.1186/1472-6793-8-12
  11. Duelli, R. and W. Kuschinsky. 2001. Brain glucose transporters: relationship to local energy demand. News. Physiol. Sci. 16, 71-76.
  12. Endo, N., C. Emilio, M. Salvador, and O. C. Michele. 2004. Mitochondrial biogenesis as a cellular signaling framework. Biochem Pharmacol. 67, 1-15. https://doi.org/10.1016/j.bcp.2003.10.015
  13. Garesse, R. and C. G. Vallejo. 2001. Animal mitochondrial biogenesis and function: a regulatory cross-talk between two genomes. Gene 263, 1-16. https://doi.org/10.1016/S0378-1119(00)00582-5
  14. Hardie, D. G. 2004. AMP-activated protein kinase: a key system mediating metabolic responses to exercise. Med. Sci. Sports Exerc. 36, 28-34. https://doi.org/10.1249/01.MSS.0000106171.38299.64
  15. Hou, W. K., Y. X. Xian, L. Zhang, H. Lai, X. G. Hou, Y. X. Xu, T. Yu, F. Y. Xu, J. Song, C. L. Fu, W. W. Zhang, and L. Chen. 2007. Influence of blood glucose on the expression of glucose trans-porter proteins 1 and 3 in the brain of diabetic rats. Chin. Med. J. 120, 1704-1709.
  16. Jacobs, H. T. 2003. The mitochondrial theory of aging: dead or alive? Aging Cell 2, 9-10. https://doi.org/10.1046/j.1474-9728.2003.00037.x
  17. Jeong, L. G., J. H. Yoon, H. H. Lee, J. O. Kim, T. B. Sel, and M. J. Oh. 2007. Effect of exercise training on expression of GLUT 1 and GLUT 3 protein in the hippocampus of streptozotocin-induced diabetic rats. J. Korean Physical Edu. 46, 359-367.
  18. Kawamura, M., J. W. Heinecke, and A. Chait. 1994. Pathophysiological concentrations of glucose promote oxidative modification of low density lipoprotein by a superoxide dependent pathway. J. Clin. Invest. 94, 771-778. https://doi.org/10.1172/JCI117396
  19. Larsson, N. G., J. Wang, H. Wilhelmsson, A. Oldfors, P. Rustin, M. Lewandoski, G. S. Barsh, and V. Clayton. 1998. Mitochondrial transcription factor A is necessary for mtDNA maintenance and embryogenesis in mice. Nat. Genet. 18, 231-236. https://doi.org/10.1038/ng0398-231
  20. Lee, S. Z., S. H. Park, and H. S. Lee. 2001. Chainges in vivo lipid peroxidation and antioxidant defense system in streptozotocin induced diabetic rats: a time course study. J. Korean Nutr. Soc. 34, 253-264.
  21. Li, Z. G. and A. A. Sima. 2004. C-peptide and central nervous system complications in diabetes. Exp. Diabesity Res. 5, 79-90. https://doi.org/10.1080/15438600490424550
  22. Luis, D. M., B. Lamvert, N. Sash, R. R. Ghazala, P. Norman, and A. F. Paul. 2001. Effect of streptozotocin-induced diabetes on glycogen resynthesis in fasted rats post-high-intensity exercise. Am. J. Physiol. Endocrinol. Metab. 280, E83-91.
  23. Monsalve, M., Z. Wu, G. Adelmant, P. Puigserver, M. Fan, and B. M. Spiegelman. 2000. Direct coupling of transcription and mRNA processing through the thermogenic coactivator PGC-1. Mol. Cell 6, 307-316. https://doi.org/10.1016/S1097-2765(00)00031-9
  24. Mootha, V. K., C. M. Lindgren, K. F. Eriksson, A. Subramanian, S. Sihag, J. Lehar, P. Pulgserver, E. Carlsson, M. Ridderstrale, E. Laurlla, N. Houstls, M. J. Daly, N. Patterson, J. P. Mesirov, T. R. Golub, P. Tamayo, B. Spiegelman, E. S. Lander, J. N. Hirschhorn, D. Altshuler, and L. C. Grouup. 2003. PGC-1, Lpha-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes. Nat. Genet. 34, 267-273. https://doi.org/10.1038/ng1180
  25. Muranyi, M., M. Fujioka, Q. He, A. Han, G. Yong, K. Csiszar, and P. A. Li. 2003. Diabetes activates cell death pathway after transient focal cerebral ischemia. Diabetes 52, 481-486. https://doi.org/10.2337/diabetes.52.2.481
  26. Nishikawa, T., D. Edelstein, and M. Brownlee. 2000. The missing link: a single unifying mechanism for diabetic complications. Kidney Int. Suppl. 77, S26-30.
  27. Norrbom, J., C. J. Sundberg, H. Ameln, W. E. Kraus, E. Jansson, and T. Gustafsson. 2004. PGC-1alpha mRNA expression is influenced by metabolic perturbation in exercising human skeletal muscle. J. Appl. Physiol. 96, 189-194.
  28. Park, S., J. S. Jang, D. W. Jun, and S. M. Hong. 2005. Exercise enhances insulin and leptin signaling in the cerebral cortex and hypothalamus during dexamethasone-induced stress in diabetic rats. Neuroendocrinol. 82, 282-293. https://doi.org/10.1159/000093127
  29. Patti, M. E., A. J. Butte, S. Crunkhorn, K. Cusi, R. Berria, S. Kashyap, Y. Miyazaki, I. Kohane, M. Costello, R. Saccone, E. J. Landarker, A. B. Goldfine, E. Mun, R. DeFronzo, J. Finlayson, C. R. Kahn, and L. J. Mandarino. 2003. Coordinated reduction of genes of oxidative metabolism in human with insulin resistance and diabetes: potential role of PGC1 and NRF1. Proc. Natl. Acad. Sci. USA 100, 8466-8471. https://doi.org/10.1073/pnas.1032913100
  30. Puigserver, P., Z. Wu, C. W. Park, R. Graves, M. Wright, and B. Spiegelman. 1998. A cold-inducible coactivator of nuclear receptors linked to adaptive thermogenesis. Cell 92, 829-839. https://doi.org/10.1016/S0092-8674(00)81410-5
  31. Puigserver, P. and B. M. Spiegelman. 2003. Peroxisome proliferator- activated receptor-gamma coactivator 1 alpha (PGC-1 alpha): transcriptional coactivator and metabolic regulator. Endocr. Rev. 24, 78-90. https://doi.org/10.1210/er.2002-0012
  32. Reagan, L. P., N. Gorovits, E. K. Hoskin, S. E. Alves, E. B. Katz, C. A. Grillo, G. G. Piroli, B. S. McEwen, and M. J. Charron. 2001. Localization and regulation of GLUT${\times}$1 glucose transporter in the hippocampus of streptozotocin diabetic rats. Proc. Natl. Acad. Sci. USA 98, 2820-2825. https://doi.org/10.1073/pnas.051629798
  33. Rosen, P., P. P. Nawroth, G. King, W. Möller, H. J. Tritschler, and L. Packer. 2001. The role of oxidative stress in the onset and progression of diabetes and its complications: a summary of a Congress Series sponsored by UNESCO-MCBN, the American Diabetes Association and the German Diabetes Society. Diabetes Metab. Res. Rev. 17, 189-212. https://doi.org/10.1002/dmrr.196
  34. Sander, M. H. and A. Johan.2004. PGC-1$\alpha$: Turbocharging Mitochondria. Cell 119, 5-7. https://doi.org/10.1016/j.cell.2004.09.016
  35. Scarpulla, R. C. 2002. Transcriptional activators and coactivators in the nuclear control of mitochondrial function in mammalian cells. Gene 286, 81-89. https://doi.org/10.1016/S0378-1119(01)00809-5
  36. Sen, C. K. 1995. Oxidants and antioxidants in exercise. J. Appl. Physiol. 79, 675-686.
  37. Serradas, P., M. H. Giroix, C. Saulnier, M. N. Gangnerau, L. A. Borg, M. Welsh, B. Portha, and N. Welsh. 1995. Mitochondrial deoxyribonucleic acid content is specifically decreased in adult, but not fetal, pancreatic islets of the Goto-Kakizaki rat, a genetic model of noninsulin-dependent diabetes. Endocrinol. 136, 5623-5631. https://doi.org/10.1210/en.136.12.5623
  38. Takasu, N., I. Komiya, T. Asasa, Y. Nagasawa, and T, Yamada. 1991. Streptozotocin- and alloxan-induced $H_2O_2$ generation and DNA fragmentation in pancreatic islets. $H_2O_2$ as mediator for DNA fragmentation. Diabetes 40, 1141-1145. https://doi.org/10.2337/diabetes.40.9.1141
  39. Terada, S. and I. Tabata. 2004. Effects of acute bouts of running and swimming exercise on PGC-1alpha protein expression in rat epitrochlearis and soleus muscle. Am. J. Physiol. Endocrinol. Metab. 286, E208-216.
  40. Tsai, E. C., I. B. Hirsch, J. D. Brunzell, and A. Chait. 1994. Reduced plasma peroxyl radical trapping capacity and increased susceptibility of LDL to oxidation in poorly controlled IDDM. Diabetes 43, 1010-1014. https://doi.org/10.2337/diabetes.43.8.1010
  41. Yang, W., J. Li, and S. Hekimi. 2007. A Measurable increase in oxidative damage due to reduction in superoxide detoxification fails to shorten the life span of long-lived mitochondrial mutants of Caenorhabditis elegans. Genetics 177, 2063-2074. https://doi.org/10.1534/genetics.107.080788
  42. West, I. C. Radicals and oxidative stress in diabetes. Diabet. Med. 17, 171-180. https://doi.org/10.1046/j.1464-5491.2000.00259.x
  43. Winder, W. W., E. B. Taylor, and D. M. Thomson. 2006. Role of AMP-activated protein kinase in the molecular adaptation to endurance exercise. Med. Sci. Sports Exerc. 38, 1945-1949. https://doi.org/10.1249/01.mss.0000233798.62153.50
  44. Wu, Z., P. Puigserve, U. Andersson, C. Zhang, G. Adelmant, V. Mootha, A. Troy, S. Cinti, B. Lowell, R. C. Scarpulla, and B. M. Spiegelman. 1999. Mechanisms controlling mitochondrial biogenesis and respiration through the thermogenic coactivator PGC-1. Cell 98, 115-124. https://doi.org/10.1016/S0092-8674(00)80611-X