DOI QR코드

DOI QR Code

A Phylogenetic Analysis of Otters (Lutra lutra) Inhabiting in the Gyeongnam Area Using D-Loop Sequence of mtDNA and Microsatellite Markers

경남지역 수달(Lutra lutra)의 mitochondrial DNA D-loop지역과 microsatellite marker를 이용한 계통유전학적 유연관계 분석

  • Park, Moon-Sung (Division of Applied Life Science (BK21 program) Graduate School of Gyeongsang National University) ;
  • Lim, Hyun-Tae (Division of Applied Life Science (BK21 program) Graduate School of Gyeongsang National University) ;
  • Oh, Ki-Cheol (Nakdong River Valley Ministry of Environment) ;
  • Moon, Young-Rok (Otters Ecology Research Center) ;
  • Kim, Jong-Gap (Division of Applied Life Science (BK21 program) Graduate School of Gyeongsang National University) ;
  • Jeon, Jin-Tae (Division of Applied Life Science (BK21 program) Graduate School of Gyeongsang National University)
  • 박문성 (경상대학교 응용생명과학부(BK21)) ;
  • 임현태 (경상대학교 응용생명과학부(BK21)) ;
  • 오기철 (낙동강유역환경청) ;
  • 문영록 ((사)수달생태연구센터)) ;
  • 김종갑 (경상대학교 응용생명과학부(BK21)) ;
  • 전진태 (경상대학교 응용생명과학부(BK21))
  • Received : 2010.11.19
  • Accepted : 2011.01.31
  • Published : 2011.03.30

Abstract

The otter (Lutra lutra) in Korea is classified as a first grade endangered species and is managed under state control. We performed a phylogenetic analysis of the otter that inhabits the Changnyeong, Jinju, and Geoje areas in Gyeongsangnamdo, Korea using mtDNA and microsatellite (MS) markers. As a result of the analysis using the 676-bp D-loop sequence of mtDNA, six haplotypes were estimated from five single nucleotide polymorphisms. The genetic distance between the Jinju and Geoje areas was greater than distances within the areas, and the distance between Jinju and Geoje was especially clear. From the phylogenetic tree estimated using the Bayesian Markov chain Monte Carlo analysis by the MrBays program, two subgroups, one containing samples from Jinju and the other containing samples from the Changnyeong and Geoje areas were clearly identified. The result of a parsimonious median-joining network analysis also showed two clear subgroups, supporting the result of the phylogenetic analysis. On the other hand, in the consensus tree estimated using the genetic distances estimated from the genotypes of 13 MS markers, there were clear two subgroups, one containing samples from the Jinju, Geoje and Changnyeong areas and the other containing samples from only the Jinju area. The samples were not identically classified into each subgroup defined by mtDNA and MS markers. It could be inferred that the differential classification of samples by the two different marker systems was because of the different characteristics of the marker systems used, that is, the mtDNA was for detecting maternal lineage and the MS markers were for estimating autosomal genetic distances. Nonetheless, the results from the two marker systems showed that there has been a progressive genetic fixation according to the habitats of the otters. Further analyses using not only newly developed MS markers that will possess more analytical power but also the whole mtDNA are needed. Expansion of the phylogenetic analysis using otter samples collected from the major habitats in Korea should be helpful in scientifically and efficiently maintaining and preserving them.

국내에 서식하는 수달의 경우 멸종 위기 I 급 종으로 지정되어 국가적인 차원에서 관리하고 있는 보호종이다. 수달의 유전자원 보호 및 체계적인 관리를 위한 기초자료로 활용하기 위해 경남지역에 서식하는 수달의 계통유전학적 유연관계를 mtDNA D-loop 지역의 염기서열분석과 MS marker 분석을 통하여 실시하였다. 그 결과 mtDNA D-loop 지역의 676 bp 부분만 보았을 때 5개의 SNP가 확인되었으며, 6개의 haplotype이 추정되었다. 진주 인근 지역과 거제도 인근 지역에서 수집한 시료는 지역 내 유전적 거리가 지역 간의 유전적 거리보다는 가까운 것을 확인 할 수 있었고, 진주와 거제도 지역 간의 유전적 거리는 확연히 구분이 되었다. MrBays의 Bayesian Markov chain Monte Carlo 분석법을 이용하여 추정한 phylogeny 분석결과 뚜렷한 2개 그룹(진주와 거제/창녕 그룹)으로 분류 되었다. Parsimonious median-joining network [5] 분석의 결과 또한 2개의 뚜렷한 그룹으로 분류되어 phylogeny 분석결과와 일치하는 결과를 보였다. MS marker를 이용하여 추정한 유전적 거리지수를 활용하여 추정한 consensus tree의 결과 또한 크게 2개의 그룹으로 분류 되며, 첫 번째 그룹에는 거제도지역 시료, 진주인근지역 시료 일부 그리고 창녕 우포늪에서 채취한 시료가 하나의 그룹으로 나뉘어 졌으며, 두 번째 그룹에는 진주인근 지역에서 채취한 시료만이 포함되어 하나의 그룹을 형성하여, mtDNA를 이용하여 분석한 것과 일부 다른 결과를 보였다. 이러한 결과의 차이는 모계를 추정하는 mtDNA와 상염색체 상의 MS marker의 특성에 기인한 것으로 보이나, 경상남도에 서식하는 수달을 크게 진주와 거제지역의 수달로 구분하는 것에는 유사한 결과를 보여 서식지 별 유전적 고정현상이 있음을 확인할 수 있었다. 하지만 좀 더 정확한 검증을 위해서는 수달의 full mtDNA 분석 및 국내에서 서식하는 수달에 적합한 MS marker발굴을 통한 대립유전자형을 분석하는 추가 연구가 필요하며, 전국 단위의 수달 시료를 확보하여 유전적 유연관계 분석을 실시한다면 한국 내 수달의 보전 및 보호에 도움이 될 것으로 사료되어 진다.

Keywords

References

  1. Achmann, R., I. Curik, P. Dovc, T. Kavar, I. Bodo, F. Habe, E. Marti, J. Solkner, and G. Brem. 2004. Microsatellite diversity, population subdivision and gene flow in the Lipizzan horse. Anim. Genet. 35, 285-292. https://doi.org/10.1111/j.1365-2052.2004.01157.x
  2. Amanda, S. B., A. F. Jennifer, M. M. Lisa, E. R. Olin Jr, and S. S. Thomas. 2004. Development of polymorphic microsatellite loci for North American river otters(Lontra canadensis) and amplification in related Mustelids. Mol. Ecol. Notes 4, 56-58.
  3. Amanda, S. B., A. G. D. Jennifer, E. R. Olin Jr, and S. S. Thomas. 2005. Ten new polymorphic microsatellite loci for North American river otters(Lontra canadensis) and their utility in related Mustelids. Mol. Ecol. Notes 5, 602-604. https://doi.org/10.1111/j.1471-8286.2005.01005.x
  4. Brown, W. M., M. George Jr, and A. C. Wilson. 1979. Rapid evolution of animal Mitochondrial DNA. Proc. Natl. Acad. Sci. USA 76, 1967-1971. https://doi.org/10.1073/pnas.76.4.1967
  5. Bandelt, H. J., P. Forster, and A. Rohl. 1999. Median-joining networks for inferring intraspecific phylogenies. Mol. Diol. Evol. 16, 37-48.
  6. Centron, D., B. Ramirez, L. Fasola, D. W. Macdonald, C. Chehebar, A. Schiavini, and M. H. Cassini. 2008. Diversity of mtDNA in Southern River Otter (Lontra provocax) from Argentinean Patagonia. J. Heredity 99, 198-201. https://doi.org/10.1093/jhered/esm117
  7. Cho, I. C. 2004. Phylogenetic analysis based on porcine mitochondrial DNA and melanocortin receptor 1 gene: Focusing on Korean Native Pig in Jeju province and Korean Wild Boar. Ph. D Thesis. Gyeongsang National University, Gyeongnam Jinju. Korea
  8. CITES. 2005. Appendices I,II and III. (http://www.cites.org/eng/app/appendices.shtml)
  9. Clayton, D. A. 1982. Replication of animal Mitochondrial DNA. Cell 28, 693-705. https://doi.org/10.1016/0092-8674(82)90049-6
  10. Daniel, D. and S. Christian. 2002. Microsatellite analyser (MSA): a platform independent analysis tool for large microsatellite data sets. Mol. Ecol. Notes 3, 167-169.
  11. Hasegawa, M., K. Kishino, and T. Yano. 1985. Dating the human-ape splitting by a molecular clock of mitochondrial DNA. J. Mol. Evol. 22, 160-174. https://doi.org/10.1007/BF02101694
  12. Hayashi, J. I., Y. Tagashira, and M. C. Yoshida. 1985. Absence of extensive recombination between inter- and intraspecies mitochondrial DNA in mammalian cells. Experimental. Cell Res. 160, 387-395. https://doi.org/10.1016/0014-4827(85)90185-5
  13. IUCN. 2004. Lutra lutra in the section of the IUCN Red list of threatened species. (www.iucnredlist.org/search/details.php?scecies=12419)
  14. Jang, K. H., S. H. Ryu, and U. W. Hwang. 2009. Mitochondrial Genome of the Eurasian Otter (Mamalia, Carnivora, Mustelidae). Genes Genome 31, 19-27. https://doi.org/10.1007/BF03191134
  15. Jessop, R. M. 1993. The re-introduction of the European otter, Lutra Lutra into lowland England carried out by the otter trust, pp. 1983-92: a progress report. in proceeding of the national otter conference (ed. Morris, P. A), the Mammal Society.
  16. Jo, Y. S., C. M. Won, and J. P. Kim. 2006. Distribution of Eurasian Otter Lutra lutra in Korea. Korean J. Environ. Biol. 24, 89-94.
  17. Ki, J. S., D. S. Hwang, T. J. Park, S. H. Han, and J. S. Lee. 2009. A comparative analysis of the complete mitochondrial genome of the Eurasian otter Lutra lutra (Carnivora; Mustelidae). Mol. Biol. Rep. 37, 1943-1955.
  18. Kondo, R., Y. Satta, E. T. Matsuura, H. Isiwa, N. Tagahata, and S. I. Chigusa. 1990. Incomplete maternal transmission Mitochondrial DNA in Drosophila. Genetics 126, 367-379.
  19. Kruuk, H. 1995. Wild Otter: Predation and Poulations. Oxford University Press.
  20. Lansman, R. A., J. C. Avise, and M. D. Huettel. 1983. Critical experimental test of the domestic cat (Felis catus) Mitochondrial genome and a transposed mtDNA tandem repeat (Numt) in the nuclear genome. Genomics 33, 299-246.
  21. Li, K., Y. Chen, C. Moran, B. Fan, S. Zhao, and Z. Peng. 2000. Analysis of diversity and genetic relationships between four Chinese indigenous pig breeds and one Australian commercial pig breed. Anim. Genet. 31, 322-325. https://doi.org/10.1046/j.1365-2052.2000.00649.x
  22. Librado, P. and J. Rozas. 2009. DnaSP v5: A software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25, 1451-1452. https://doi.org/10.1093/bioinformatics/btp187
  23. Marshall, T. C., J. Slate, L. E. B. Kruuk, and J. M. Pemberton. 1998. Statistical confidence for likelihood-based paternity inference in natural populations. Mol. Ecol. 7, 639-655. https://doi.org/10.1046/j.1365-294x.1998.00374.x
  24. Mason, C. F. and S. M. Mcdonald. 1986. Otter: Ecology and Conservation. Cambridge University Press.
  25. Mason, C. F. and S. M. Mcdonald. 1987. Seasonal Making in an Otter Population. Acta. Theriol. 32, 449-462. https://doi.org/10.4098/AT.arch.87-31
  26. Nei, M. 1972. Genetic distance between populations. Am. Nat. 106, 283-292. https://doi.org/10.1086/282771
  27. Nylander, J. A. A. 2004. MrModeltest v2. Program distributed by the author. Evolutionary Biology Centre, Uppsala University. (http://darwin.uvigo.es/software/modeltest.html)
  28. Pat, F. T., S. Macdonald, and C. Mason. 1990. Otters: An action plan for their conservation. IUCN/SSC Otter Specialist Group. (http://data.iucn.org/dbtw-wpd/html/Otter/cover.html)
  29. Ronquist, F., and J. P. Huelsenbeck. 2003. MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19, 1572-1574. https://doi.org/10.1093/bioinformatics/btg180
  30. Posada, D. and K. A. Crandall. 2001. Selecting the best-fit model of nucleotide substitution. Syst. Biol. 50, 580-601. https://doi.org/10.1080/106351501750435121
  31. Swofford, D. L. 1998. PAUP*. Phylogenetic Analysis Using Parsimony (*and Other Methods). Version 4. Sinauer Associates, Sunderland, Massachusetts.
  32. Thompson, J. D., D. G. Higgins, and T. J. Gibson. 1994. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting position specific gap penalties and weight matrix choice. Nucl. Acids Res. 22, 4673-4680. https://doi.org/10.1093/nar/22.22.4673
  33. Xia, X. and Z. Xie. 2001. DAMBE: Data analysis in molecular biology and evolution. J. Hered. 92, 371-373. https://doi.org/10.1093/jhered/92.4.371
  34. Van, Z. D. J. and C. G. Van. 1987. A phylogenetic study of the Lutrinae (Carnivora; Mustelidae) using morphological data. Can. J. Zool. 65, 2536-544. https://doi.org/10.1139/z87-383