DOI QR코드

DOI QR Code

로즈마리 추출물 및 분획물의 항균·항산화 활성

Antioxidative and Antimicrobial Activities of Methanol Extract from Rosmarinus officinalis L. and Their Fractions

  • Yu, Mi-Hee (Department of Food Science and Technology, Keimyung University) ;
  • Chae, In-Gyeong (Department of Food Science and Technology, Keimyung University) ;
  • Jung, Young-Tae (Department of Food Science and Technology, Keimyung University) ;
  • Jeong, Yeon-Seop (Department of Food Science and Technology, Keimyung University) ;
  • Kim, Hyuk-Il (Department of Food Science and Technology, Keimyung University) ;
  • Lee, In-Seon (Department of Food Science and Technology, Keimyung University)
  • 투고 : 2010.11.09
  • 심사 : 2010.12.27
  • 발행 : 2011.03.30

초록

허브류의 하나인 로즈마리를 추출, 분획하여 각 용매별 항산화와 항균효과를 관찰하였다. 로즈마리의 항산화효과를 측정하기 위해 DPPH radical 소거능과, ABTS radical 소거능 및 FRAP 활성을 측정하였다. DPPH radical 소거능을 측정한 결과 ethyl acetate분획물의 $RC_{50}$값이 $3.22\;{\mu}g/ml$로 강력한 항산화능을 나타냈으며, water 분획물을 제외한 나머지 분획물(methanol: $5.05\;{\mu}g/ml$, hexane: $6.28\;{\mu}g/ml$, chlorofrom: $5.32\;{\mu}g/ml$, buthanol: $5.74\;{\mu}g/ml$)에서도 강력한 항산화능을 보였다. FRAP활성 또한 ethyl acetate 분획물이 $5.9{\pm}0.3\;{\mu}M/{\mu}g$의 높은 $Fe^{2+}$함량을 나타났으며 water 분획물을 제외한 나머지 분획물에서 높은 $Fe^{2+}$함량을 나타내어 DPPH radical 소거능과 유사한 경향을 보였다. ABTS radical 소거능은 ethyl acetate분획물의 $RC_{50}$값이 $5.05\;{\mu}g/ml$, methanol 추출물의 $RC_{50}$값이 $8.72\;{\mu}g/ml$으로 강력한 항산화능을 나타냈으며 그 외 나머지 분획물들은 DPPH radical 소거능보다 상대적으로 낮은 항산화능을 나타냈다. 로즈마리 단일물질로는 rosmarinic acid, carnosic acid가 DPPH radical 소거능과 FRAP활성에 유사한 경향을 보인 반면 ABTS radical 소거능은 rosmarinic acid만이 $43.16\;{\mu}M$에서 $RC_{50}$값을 나타내었다. 로즈마리의 항균 활성은 Paper disc method를 이용한 Inhibition zone과 MIC (최소 저해 농도)를 측정하여 항균력을 알아본 후 hand plate와 resazurin 환원 실험을 통해 항균제와 식품 보존제로서의 이용 가능성을 알아보았다. 항균 활성 검색 결과 methanol 추출물과 chloroform 분획물이 S. aureus에 대해서 2.5 mg/disc의 농도에서 inhibition zone이 각각 15.3 mm, 15.5 mm로 높게 나타났으며 E. coli에 대해서 14.3 mm, 13.7 mm로 나타나 강력한 항균 효과를 나타내었다. MIC는 S. aureaus 균주와 E. coli 균주 모두 methanol 추출물에서 5 mg/ml의 MIC값을 나타내었고 chloroform 분획물은 2 mg/ml에서 MIC값을 나타내었다. 항균활성의 경우 methanol 추출물과 소수성의 hexane, chloroform 분획물에서 높은 활성을 보였다. 위의 결과를 통해 항균제와 식품 보존제 등의 상품화는 경제적이고 그 활성이 우수한 methanol 추출물의 이용이 가장 이상적인 것으로 판단되어 methanol 추출물을 이용하여 항균제와 식품 보존제로의 이용 가능성을 측정한 결과 항균제로는 hand plate를 통해 5 mg/ml에서 식품 보존제로는 resazurin 환원 실험을 통해 1 mg/ml에서 이용이 가능하리라 생각된다.

This study was performed to evaluate the antioxidant and antimicrobial activity of methanol extract from Rosmarinus officinalis L. and its fractions. The ethyl acetate fraction of rosemary had a higher antioxidant activity in both DPPH ($3.22\;{\mu}g/ml$) and ABTS ($5.05\;{\mu}g/ml$) compared to other extracts and fractions. Based on the results of the FRAP assay, the ethyl acetate fraction of rosemary showed a value of $5.9{\pm}0.3\;{\mu}M/{\mu}g$, and buthanol fraction and rosmarinic acid exhibited values of $4.8{\pm}0.2\;{\mu}M/{\mu}g$ and $5.1{\pm}0.1\;{\mu}M/{\mu}M$, respectively. Measurements of the antimicrobial activities of the extracts, fraction against gram positive, negative bacteria revealed that the methanol extract, hexane, ethyl acetate, and chloroform fraction of rosemary caused Staphylococcus aureus and Escherichia coli to form clear zones greater than 12 mm. Furthermore, the methanol extract and chloroform fraction showed high antibacterial activity, with inhibition zone exceeding 13 mm. The methanol extract and chloroform fraction of rosemary had broad antimicrobial spectrums and low MIC values. Therefore, methanol extracts of rosemary could serve as potential antibacterial agents to inhibit pathogen growth in food and hand sanitizers.

키워드

참고문헌

  1. Aligiannis, N., E. Kalpoutzakis, S. Mitaku, and I. B. Chinou. 2001. Composition and antimicrobial activity of the essential oils of two Origanum species. J. Agric. Food Chem. 49, 4168-4179. https://doi.org/10.1021/jf001494m
  2. Al-sereiti, M. R., K. M. Abu-Amer, and P. Sen. 1999. Pharmacology of rosemary (Rosmarinus officinalis Linn) and its therapeutic potentials. Indian J. Exp. Biol. 37, 124-130.
  3. Benzie, I. F. F. and J. J. Strain. 1996. The ferric reducing ability of plasma (FRAP) as a measure of "antioxidant power": The FRAP assay. Anal. Biochem. 230, 70-79.
  4. Bozin, B., N. Mimica-Dukic. N. Simin, and G. Anackov. 2006. Characterization of the volatile composition of essential oils of some Lamiaceae spices and the antimicirobial and antioxidant activities of the entire oils. J. Agric. Food Chem. 54, 1822-1828. https://doi.org/10.1021/jf051922u
  5. Branen, A. L. 1975. Toxicology and biochemistry of butylated hydroxy anisole and butylated hydroxy toluene. J. Am. Oil Chem. Soc. 52, 59-63. https://doi.org/10.1007/BF02901825
  6. Caldefied-Chezet, F., M. Guerry, J. C. Chalchat, C. Fusillier, M. P. Vasson, and J. Guillot. 2004. Anti-inflammatory effects of melaleuca altermifolia essential oil on human polymorphonuclear neutrophils and monocytes. Free Radic. Res. 38, 805-811. https://doi.org/10.1080/1071576042000220247
  7. Calzada, J., J. F. Ciccio, and G. Echandi. 1980. Antimicrobial activity of the heliangolide chromolaenide and related sesquiterpene lactones. Phytochemistry 19, 967-968. https://doi.org/10.1016/0031-9422(80)85151-X
  8. Choi, D. S. and H. Y. Go. 1995. Chemistry of functuonal food. pp. 78-79, JI-GU Publish Co. Seoul.
  9. Choi, Y. M., M. H. Kim, J. J. Shin, J. M. Park, J. S. Lee, and M. H. Kim. 2003. The antioxidant activities of the some commercial teas. J. Korean Soc. Food Sci. Nutr. 32, 723-727. https://doi.org/10.3746/jkfn.2003.32.5.723
  10. Cho, J. Y., I. Choi, and E. K. Hwang. 2003. Antimicrobial activity of extracts from medicinal herbs against Escherichia coli. J. Korean Vet. Res. 43, 625-631.
  11. Clark, A. M., F. S. El-Feraly, and W. S. Li. 1981. Antimicrobial activity of phenolic constituents of Magnolia grandiflora L. J. Pharm. Sci. 70, 951-952. https://doi.org/10.1002/jps.2600700833
  12. Conner, D. E. and L. R. Beuchat. 1984. Effects of essential oils from plants on growth of food spoilage yeasts. J. Food Sci. 49, 429-434. https://doi.org/10.1111/j.1365-2621.1984.tb12437.x
  13. Davidson, P. M. and L. S. Post. 1983. Naturally occurring and miscellaneous food antimicrobials. pp. 371, In Antimicrobials in foods. In Branen, A. L. and P. M. Davidson (eds.), Marcel Dekken Inc., New York.
  14. Doldberg, I. 1994. Functional Foods. pp. 3-550, Chapman & Hall Press. New York.
  15. Duke, J. A. 1997. The green pharmacy. pp. 6-23, Rodale Press, New York.
  16. Elena, I., C. Alejandro, L. C. Antonio, J. S. Francisco, C. Sofia, and R. Guillenno. 2000. Combined use of supercritical fluid extraction, micellar electrokinetic chromatography, and reverse phase high performance liquid chromatography for the analysis of antioxidants from rosemary (Rosmarinus officinalis). J. Agric. Food Chem. 48, 4060-4065. https://doi.org/10.1021/jf0002692
  17. Holasova, M., V. Fiedlerova, H. Smrcinova, M. Orsak, J. Lachman, and S. Vavreinova. 2002. Buckwheat the source of antioxidant activity in functional foods. Food Res. Int. 35, 207-211. https://doi.org/10.1016/S0963-9969(01)00185-5
  18. Ito, N., S. Fukushima, A. Hasegawa, M. Shibata, and T. Ogiso. 1983. Carcinogenecity of butylated hydroxy anisole in F344 rats. J. Cancer Inst. 70, 343-347.
  19. Jang, H. G., H. O. Kim, M. G. Han, and S. D. Lee. 1991. Food hygiene and experiments. pp. 357-378, Seoul.
  20. Kalidas, S. 2001. Biosynthesis and medical application of rosmarinic acid. J. Herbs Spices Med. Plant 8, 161-181. https://doi.org/10.1300/J044v08n02_05
  21. Kim, S. H., M. J. Chung, H. D. Jang, and S. S. Ham. 2010. Antioxidative activities of the Codonopsis lanceolata extract in vitro and in vivo. J. Korean Soc. Food Sci. Nutr. 39, 193-202. https://doi.org/10.3746/jkfn.2010.39.2.193
  22. Kim, T. S., S. J. Kang, and W. C. Park. 1999. Changes in antioxdants and antioxdants enzymes activities of soybean leaves subject to water stress. J. Korean Soc. Agric. Chem. Biol. 42, 246-251.
  23. Lewis, R. J. 1989. There regulatory status their use by the food industry. pp. 3-27, In Food additives handbook. In Robert, W. D. (ed.), Nostrand Reinhold. New York.
  24. Lee, H. and Y. O. You. 2004. Inhibitory effect of Caeaslpinia sappan on caries inducing properties of Streptococcus mutans and isolation of antibacterial component, brazilin. Wonkwang Univ. Dent. 13, 63-68.
  25. Lee, M. K., H. A. Kwon, D. Y. Kwon, H. Park, D. H. Sohn, Y. C. Kim, S. K. Eo, H. Y. Kang, S. W. Kim, and J. H. Lee 2006. Antibacterial activity of medicinal herb extract against Salmonella. Int. J. Food Microbiol. 111, 270-275. https://doi.org/10.1016/j.ijfoodmicro.2006.06.004
  26. Lee, S. O., H. J. Lee, M. H. Yu, H. G. Im, and I. S. Lee. 2005. Total polyphenol contents and antioxidant activities of methanol extract from vegetable produced in Ullung Iand. J. Korean Food Sci. Technol. 37, 233-240.
  27. Lee, S. Y., J. G. Kim, B. J. Baik, Y. M. Yang, K. Y. Lee, Y. H. Lee, and M. A. Kim. 2009. Antimicrobial effect of essential oils on oral bacteria. J. Korean Acad. Pediatr. Dent. 36, 1-11.
  28. Mann, C. M. and J. L. Markham. 1998. A new method for determining the minimum inhibitory concentration of essential oils. J. Appl. Microbiol. 84, 538-544. https://doi.org/10.1046/j.1365-2672.1998.00379.x
  29. Medeiros, R., G. F. Passos, C. E. Vitor, J. Koepp, T. L Mazzuco, L. F. Pianowski, M. M. Campos, and J. B. Calixto. 2007. Effect of two active compounds obtained from the essential oil of Cordia verbenacea on the acute inflammatory responses elicited by LPS in the rat paw. Br. J. Pharmacol. 151, 618-627. https://doi.org/10.1038/sj.bjp.0707270
  30. Misaghi, A. and A. A. Basti. 2007. Effects of Zataria Multiflora boiss. essential oil and nisin on Bacillus cereus ATCC 11778. Food Control 18, 1043-1049. https://doi.org/10.1016/j.foodcont.2006.06.010
  31. Moon, G. S., B. M. Ryu, and M. J. Lee. 2003. Components and antioxidative activities of buchu (Chinese chives) harvested at different times. Korean J. Food Sci. Technol. 35, 493-498.
  32. Oh, D. H., S. S. Ham, B. K. Park. C. Ahn, and J. Y. Yu. 1998. Antimicrobial of natural medicinal herbs on the food microorganisms. J. Korean Food Sci. Technol. 30, 957-963.
  33. Osawa, T. 1994. Novel natural antioxidant for utilization in food and biological system. pp. 241-251, In Postharvest Biochemistry of Plant Food Material in the Tropics.In Uritani I, V. V. Garcia, E. M. Mendoza (eds.), Japan Scientific Societies Press, Tokyo.
  34. Park, G. U. 2002. Healthy function and research situation of herbs in Korea. Alric. Tals. 2, 27-32.
  35. Pesch, K. L. and U. Simmert. 1929. Milchw. Forsch. 8, 551.
  36. Picman, A. K. and G. H. N. Towers. 1983. Antibacterial activity of sesquiterpene lactones. Biochem. Syst. Ecol. 11, 321-327.
  37. Sadaki, O. 1996. The development of functional foods and materials. Bioindustry 13, 44-50.
  38. Slater, T. F. 1984. Free-radical mechanisms in tissue injury. Biochem. J. 222, 1-5.
  39. Sylvestre, M., A. Pichette, A. Longtin, F. Nagau, and J. Legault. 2006. Essential oil analysis and anticancer activity of leaf essential oil of Croton Flavens L. Form Guadeloupe. J. Ethnopharmacol. 103, 99-102. https://doi.org/10.1016/j.jep.2005.07.011
  40. Tabanca, N., N. Kirimer, B. Demirci, F. Demirci, and K. H. C. Baser. 2001. Composition and antimicrobial activity of the essential oils of Micromeria cristata subsp. phrygia and the enantiomeric distribution of borneol. J. Agric. Food Chem. 49, 4300-4303. https://doi.org/10.1021/jf0105034
  41. Valko, M., D. Leibfritz, J. Moncol, M. T. Cronin, M. Mazur, and J. Telser. 2007. Free radical and antioxdants in normal physiological function and human disease. Int. J. Biochem. Cell Biol. 39, 44-84. https://doi.org/10.1016/j.biocel.2006.07.001
  42. VanBeek, T. A., R. Verpoorte, A. B. Svendsen, and R. Fokkens. 1985. Antimicrobially active alkaloids from Tabernaemontana chippii. J. Nat. Prod. 48, 400-423. https://doi.org/10.1021/np50039a008
  43. Villar, A., M. Mares, J. L. Rios, E. Canton, and M. Gobernado. 1987. Antimicrobial activity of benzylisoquinoline alkaloids. Pharmazie 42, 248-250.
  44. Wo, W. S. 1995. Research Techniques in natural products chemistry. pp. 10-29, Seoul.
  45. Yoo, M. J., Y. S. Kim, and D. H. Shin. 2006. Antibacterial effects of natural essential oils from various spices against Vibrio species and their volatile constituents. J. Korean Food Sci. Technol. 38, 438-443.

피인용 문헌

  1. Antioxidant and Antimicrobial Properties of Various Solvent Extracts from Robus idaeus vol.28, pp.5, 2015, https://doi.org/10.9799/ksfan.2015.28.5.774
  2. Optimal Extraction Conditions to Produce Rosemary Extracts with Higher Phenolic Content and Antioxidant Activity vol.45, pp.4, 2013, https://doi.org/10.9721/KJFST.2013.45.4.501
  3. Antioxidant activity of the Sumaeyaksuk tea extracts prepared with different drying and extract conditions vol.20, pp.4, 2013, https://doi.org/10.11002/kjfp.2013.20.4.546
  4. Quality and Storage Characteristics of Pork Teokgalbi with Added Rosemary (Rosemarinus officinalis) Extract Powder vol.27, pp.3, 2016, https://doi.org/10.7856/kjcls.2016.27.3.509