DOI QR코드

DOI QR Code

미토콘드리아 DNA CYTB 유전자 서열에 대한 분자 계통과 PCR-RFLP 반수체형에 근거한 제주재래돼지의 모계 기원

Maternal Origins of the Jeju Native Pig Inferred from PCR-RFLP Haplotypes and Molecular Phylogeny for Mitochondrial DNA CYTB Gene Sequences

  • 한상현 (농촌진흥청 국립축산과학원 난지축산시험장) ;
  • 고문석 (농촌진흥청 국립축산과학원 난지축산시험장) ;
  • 정하연 (농촌진흥청 국립축산과학원 난지축산시험장) ;
  • 이성수 (농촌진흥청 국립축산과학원) ;
  • 오홍식 (제주대학교 과학교육과) ;
  • 조인철 (농촌진흥청 국립축산과학원 난지축산시험장)
  • Han, Sang-Hyun (Subtropical Animal Experiment Station, National Institute of Animal Science, RDA) ;
  • Ko, Moon-Suck (Subtropical Animal Experiment Station, National Institute of Animal Science, RDA) ;
  • Jeong, Ha-Yeon (Subtropical Animal Experiment Station, National Institute of Animal Science, RDA) ;
  • Lee, Sung-Soo (National Institute of Animal Science, RDA) ;
  • Oh, Hong-Shik (Department of Science Education, Jeju National University) ;
  • Cho, In-Cheol (Subtropical Animal Experiment Station, National Institute of Animal Science, RDA)
  • 투고 : 2011.02.17
  • 심사 : 2011.03.23
  • 발행 : 2011.03.30

초록

제주재래돼지의 모계 혈통에 대한 보다 명확한 이해를 얻기 위해, 본 연구에서는 제주재래돼지의 미토콘드리아 DNA (mtDNA) CYTB 유전자를 분석하고 이를 타 품종들에서 얻은 결과들과 비교하였다. 제주재래돼지를 포함한 돼지 6 품종에서 PCR-RFLP 분석을 수행하였고, RFLP 양상은 돼지 품종들을 뚜렷하게 구분되는 두 가지 반수체형(mtCYTB1 and mtCYTB2)으로 분리시켰다. 제주재래돼지 CYTB 서열들은 계통수 상에서 유럽과 아시아품종 cluster에서 모두 발견되었다. 제주재래돼지 CYTB들 중에서 J2 group은 중국재래돼지품종들과 근연이면서 아시아 고유 돼지 계통들과 함께 출현하였으며, 다른 한 group인 J1에 해당하는 서열들은 유럽돼지 계통들과 함께 위치하였고, 아시아 품종들보다는 스페인의 Iberian 재래돼지들과 근연인 것으로 확인되었다. 이 결과들은 현재 제주도에서 사육되고 있는 제주재래돼지 품종의 모계 기원은 크게 아시아계 돼지와 유럽계 돼지인 것으로 추정됨을 보여준다. 따라서 본 연구결과들은 제주재래돼지 집단은 과거에 가축화된 아시아 고유 돼지품종들과 공통 선조를 공유하고, 또한 20세기에 유입된 유럽계 돼지 품종들도 현재의 집단 형성에 기여한 것임을 시사하고 있다.

In an effort to gain greater understanding of the maternal lineages of the Jeju native pig (JNP), we analyzed the mitochondrial DNA (mtDNA) CYTB gene and compared it with those of other pig breeds. PCR-RFLP analysis was conducted with six pig breeds including JNP, and then the RFLP patterns allowed for the separation of the pig breeds into two distinct haplotypes (mtCYTB1 and mtCYTB2). The JNP CYTB sequences were detected in both the European and Asian breed clusters on the phylogenetic tree. The J2 group was sorted with the indigenous cluster of Asian pig lineages and was related closely to Chinese native pig breeds, but a second group, J1, was sorted with the European pig lineages and appeared to be related to Spanish Iberian native pigs, rather than to Asian breeds. These results indicate that the JNP currently raised on Jeju Island have two major maternal origins estimated in Asian and European pigs. We concluded that the JNP that share a common lineage with indigenous Asian pigs were domesticated in the distant past, originating from pigs that were already being raised elsewhere at that time, and that the European pig breeds introduced in the twentieth century have also contributed to the formation of this pig population.

키워드

참고문헌

  1. Alves, E., C. Ovilo, M. C. Rodriguez, and L. Silio. 2003. Mitochondrial DNA sequence variation and phylogenetic relationships among Iberian pigs and other domestic and wild pig populations. Anim. Genet. 34, 319-324. https://doi.org/10.1046/j.1365-2052.2003.01010.x
  2. Brown, W. M., M. George, and A. C. Wilson. 1979. Rapid evolution of animal mitocondrial DNA. Proc. Natl. Acad. Sci. USA 76, 1967-1971. https://doi.org/10.1073/pnas.76.4.1967
  3. Cho, I. C., S. H. Han, M. Fang, S. S. Lee, M. S. Ko, H. Lee, H. T. Lim, C. K. Yoo, J. H. Lee, and J. T. Jeon. 2009. The robust phylogeny of Korean wild boar (Sus scrofa coreanus) using partial D-loop sequence of mtDNA. Mol. Cells 28, 423-430. https://doi.org/10.1007/s10059-009-0139-3
  4. Fang, M. and L. Andersson. 2006. Mitochondrial diversity in European and Chinese pigs is consistent with population expansions that occurred prior to domestication. Proc. Roy. Soc. B-Biol. Sci. 273, 1803-1810. https://doi.org/10.1098/rspb.2006.3514
  5. Felsenstein, J. 1993. PHYLIP (Phylogeny Inference Package) ver. 3.572, Computer program distributed by the author, Dept. of Genetics, University of Washington, Seattle, WA.
  6. Giles, R. E., H. Blanc, H. M. Cann, and D. C. Wallace. 1980. Maternal inheritance of human mitochondrial DNA. Proc. Natl. Acad. Sci. USA. 77, 6715-6719. https://doi.org/10.1073/pnas.77.11.6715
  7. Giuffra, E., J. M. H. Kijas, V. Amarger, O. Carlborg, J. T. Jeon, and L. Andersson. 2000. The origin of the domestic pig: independent domestication and subsequent introgression. Genetics 154, 1785-1791.
  8. Gongora, J., P. Fleming, P. B. Spencer, R. Mason, O. Garkavenko, J. N. Meyer, C. Droegemueller, J. H. Lee, and C. Moran. 2004. Phylogenetic relationships of Australian and New Zealand feral pigs assessed by mitochondrial control region sequence and nuclear GPIP genotype. Mol. Phylogenet. Evol. 33, 339-348. https://doi.org/10.1016/j.ympev.2004.06.004
  9. Jones, G. F. 1998. Genetic aspects of domestication, common breeds and their origins. pp. 17-50, In Ruvinsky, A. and M. F. Rothschild (eds.), The genetics of the pig. CAB International, Oxon, UK.
  10. Kijas, J. M. H., R. Wales, A. Tornsten, P. Chardon, M. Moller, and L. Andersson. 1998. Melanocortin receptor 1(MC1R) mutations and coat color in pigs. Genetics 150, 1177-1185.
  11. Kim, J. H., S. H. Han, M. C. Kang, J. H. Oh, Y. H. Jung, G. O. Kim, and M. Y. Oh. 2006. Ancient pigs on Jeju Island, Korea: molecular identification and phylogenetic relationship with extant native pigs. Korean J. Genet. 28, 385-393.
  12. Kim, K. I., J. H. Lee, K. Li, Y. P. Zhang, S. S. Lee, J. Gongora, and C. Moran. 2002. Phylogenetic relationships of Asian and European pig breeds determinated by mitochondrial DNA D-loop sequence polymorphism. Anim. Genet. 33, 19-25. https://doi.org/10.1046/j.1365-2052.2002.00784.x
  13. Kim, K. S. and C. B. Choi. 2002. Genetic structure of Korean native pig using microsatellite markers. Korean J. Genet. 24, 1-7.
  14. Kim, K. S., J. S. Yeo, and J. W. Kim. 2002. Assessment of genetic diversity of Korean native pig (Sus scrofa) using AFLP markers. Genes Genet. Syst. 77, 361-368. https://doi.org/10.1266/ggs.77.361
  15. Kim, T. H., K. S. Kim, B. H. Choi, D. H. Yoon, G. W. Jang, K. T. Lee, H. Y. Chung, H. Y. Lee, H. S. Park, and J. W. Lee. 2005. Genetic structure of pig breeds from Korea and China using microsatellite loci analysis. J. Anim. Sci. 83, 2255-2263.
  16. Kimura, M. 1980. A simple method for estimating evolutionary rates of base substitutions through comparable studies of nucleotide sequences. J. Mol. Evol. 16, 111-120. https://doi.org/10.1007/BF01731581
  17. Larson, G., K. Dobney, U. Albarella, M. Fang, E. Matisoo-Smith, J. Robins, S. Lowden, H. Finlayson, T. Brand, E. Willerslev, P. Rowley-Conwy, L. Andersson, and A. Cooper. 2005. Worldwide phylogeography of wild boar reveals multiple centers of pig domestication. Science 307, 1618-1621. https://doi.org/10.1126/science.1106927
  18. Lin, C. S., Y. L. Sun, C. Y. Liu, P. C. Yang, L. C. Chang, I. C. Cheng, S. J. Mao, and M. C. Huang. 1999. Complete nucleotide sequence of pig (Sus scrofa) mitochondrial genome and dating evolutionary divergence within Artiodactyla. Gene 236, 107-114. https://doi.org/10.1016/S0378-1119(99)00247-4
  19. Okumura, N., N. Ishiguro, M. Nakano, H. Katsuya, A. Matsui, and M. Sahara. 1996. Geographic population structure and sequence divergence in the mitochondrial DNA control region of the Japanese wild boar (Sus scrofa leucomystax), with reference to those of domestic pigs. Biochem. Genet. 34, 179-189. https://doi.org/10.1007/BF02407018
  20. Shin, T., C. Lee, S. Kim, K. Yang, C. Ko, B. Lee, S. Ahn, S. Jin, and E. Ko. 1992. An anatomy study of animal bones excavated in the Kwakji archaeological site in Cheju Island. Go-Moon-Wha 40, 31-42.
  21. Shin, T., K. Yang, and S. Kim. 1993. An osteological finding of equine bones excavated from Kwakji archaeological site in Cheju-Do. Cheju Univ. J. 37, 85-90.
  22. Shin, T. 2001. An osteological study of animal bones excavated from Jeju Jongdali shell-mount. Korean J. Vet. Res. 41, 275-279.
  23. Shin, T., T. Jin, and C. Lee. 1996. Archaeological study of animal bones excavated from Cheju Kimnyungri cave site. Korean J. Vet. Res. 36, 757-761.
  24. Thompson, J. D., D. G. Higgins, and T. I. Gibson. 1994. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position- specific gap penalties and weight matrix choice. Nucleic Acids Res. 22, 4673-4680. https://doi.org/10.1093/nar/22.22.4673
  25. Watanabe, T., Y. Hayashi, N. Ogasawara, and T. Tomita. 1985. Polymorphism of mitochondrial DNA in pigs based on restriction endonuclease cleavage patterns. Biochem. Genet. 23, 105-113. https://doi.org/10.1007/BF00499116
  26. Wilson, A. C., L. Cann, S. M. Carr, M. George, and U. B. Gyllensten. 1985. Mitochondrial DNA and two perspectives on evolutionary genetics. Biol. J. Linn. Soc. 26, 375-400. https://doi.org/10.1111/j.1095-8312.1985.tb02048.x
  27. Wu, G. S., Y. G. Yao, K. X. Qu, Z. L. Ding, H. Li, M. G. Palanichamy, Z. Y. Duan, N. Li, Y. S. Chen, and Y. P. Zhang. 2007. Population phylogenomic analysis of mitochondrial DNA in wild boars and domestic pigs revealed multiple domestication events in East Asia. Genome Biol. 8, R245. https://doi.org/10.1186/gb-2007-8-11-r245
  28. Yang, J., J. Wang, J. Kijas, B. Liu, H. Han, M. Yu, H. Yang, S. Zhao, and K. Li. 2003. Genetic diversity present within the near-complete mtDNA genome of 17 breeds of indigenous Chinese pigs. J. Hered. 94, 381-385. https://doi.org/10.1093/jhered/esg077