DOI QR코드

DOI QR Code

Comparative Study on Ethanol Production with Pentose and/or Hexose by Saccharomyces cerevisiae and/or Pichia stipitis

Saccharomyces cerevisiae와 Pichia stipitis를 이용한 오탄당과 육탄당으로부터 에탄올 생산에 관한 비교연구

  • 김중곤 (부산대학교 나노융합기술학과) ;
  • 안정훈 (KAIST 부설 한국과학영재학교)
  • Received : 2010.10.20
  • Accepted : 2011.02.18
  • Published : 2011.03.30

Abstract

Glucose and xylose are the most abundant materials in nature which can be used to produce ethanol by yeast fermentation. Three combinations of cultivation with glucose and xylose were carried out; separated, co-culture, and sequential fermentation with Saccharomyces cerevisiae and Pichia stipitis. In the separated fermentation, S. cerevisiae fermented glucose to produce 14.5 g/l ethanol from 29.4 g/l glucose but hardly used xylose. However, P. stipitis utilized not only glucose but also xylose to produce ethanol 11.9 g/l and 11.6 g/l from 29.4 g/l glucose and 29.0 g/l xylose, respectively. In the mixture of glucose and xylose, P. stipitis fermented both sugars, producing 21.1 g/l ethanol while S. cerevisiae fermented only glucose, producing 13.4 g/l ethanol. In the co-culture and sequential fermentation, the co-culture showed more efficient ethanol productivity with 18.6 g/l ethanol than the sequential fermentation with 12.4 g/l ethanol. To investigate the effect of nutrients in the growth of microorganisms and ethanol production, yeast nitrogen base (YNB) was used in the sequential fermentation with S. cerevisiae and P. stipitis. YNB supplemented some nutrients which S. cerevisiae used up in the broth and the culture showed increased growth rate, increased consumption of xylose, and increased ethanol productivity producing 22.5 g/l ethanol from 54.6 g/l sugar with a yield of 0.41 g/g.

포도당과 자일로스는 자연계에서 가장 풍부한 물질이며 이들은 효모에 의해 에탄올로 전환될 수 있다. 본 연구에서는 Saccharomyces cerevisiae와 Pichia stipitis을 이용하여 분리배양, 공동배양 그리고 순차배양 등의 조합을 통해 가장 효과적인 발효의 방법을 찾고자 하였다. 분리배양에서 S. cerevisiae은 29.4 g/l의 포도당을 발효하여 14.5 g/l의 에탄올을 생산한 반면에 자일로스를 이용하지 못했다. 그렇지만 P. stipitis은 포도당뿐만 아니라 자일로스도 분해하여 각각 포도당 29.4 g/l로부터 11.9 g/l의 에탄올을, 자일로스 29.0 g/l로부터 11.6 g/l의 에탄올을 생산하였다. 포도당과 자일로스 혼합배양에서, S. cerevisiae은 13.4 g/l의 에탄올을 생산한 반면에 P. stipitis은 21.1 g/l의 에탄올을 생산하였다. 공동배양과 순차배양에서, 공동배양이 18.6 g/l, 순차배양이 12.4 g/l의 에탄올을 생산하여 공동배양이 더 효과적인 것으로 나타났다. 두 효모의 생장에서 영양분의 효과를 보기 위해 yeast nitrogen base (YNB)을 S. cerevisiae가 포도당을 소모한 시점에 첨가하니 자일로스의 소비량과 미생물의 성장이 증가하였고 54.6 g/l의 당 혼합배양액에서 22.5 g/l의 에탄올을 생산하여 0.41 g/g의 수득율을 나타내었다.

Keywords

References

  1. Abbi, M., R. C. Kuhad, and A. Singh. 1996. Bioconversion of pentose sugars to ethanol by free and immobilized cells of Candida shehatae (NCL-3501): Fermentation behaviour. Process Biochem. 31, 555-560. https://doi.org/10.1016/S0032-9592(95)00104-2
  2. Agbogbo, F. K., G. Coward-Kelly, M. Torry-Smith, and K. S. Wenger. 2006. Fermentation of glucose/xylose mixtures using Pichia stipitis. Process Biochem. 41, 2333-2336. https://doi.org/10.1016/j.procbio.2006.05.004
  3. Batt, C. A., S. Caryallo, D. D. Easson, M. Akedo, and A. J. Sinskey. 1986. Direct evidence for a xylose metabolic pathway in Saccharomyces cerevisiae, pp. 549-553, Wiley Subscription Services, Inc., A Wiley Company.
  4. Chandrakant, P. and V. S. Bisaria. 1998. Simultaneous Bioconversion of Cellulose and Hemicellulose to Ethanol. CRC Crit. Rev. Biotechnol. 18, 295-331. https://doi.org/10.1080/0738-859891224185
  5. du Preez, J. C. and B. A. Prior. 1985. A quantitative screening of some xylose-fermenting yeast isolates. Biotech. Lett. 7, 241-246. https://doi.org/10.1007/BF01042370
  6. Goldemberg, J. and T. B. Johansson. 2004. World Energy Assessment: Overview 2004 Update. United Nations Development Programme.
  7. Gupta, R., K. K. Sharma, and R. C. Kuhad. 2009. Separate hydrolysis and fermentation (SHF) of Prosopis juliflora, a woody substrate, for the production of cellulosic ethanol by Saccharomyces cerevisiae and Pichia stipitis-NCIM 3498. Bioresource Technol. 100, 1214-1220. https://doi.org/10.1016/j.biortech.2008.08.033
  8. Jeffries, T. W. and C. P. Kurtzman. 1994. Strain selection, taxonomy, and genetics of xylose-fermenting yeasts. Enzyme Micro. Technol. 16, 922-932. https://doi.org/10.1016/0141-0229(94)90001-9
  9. Ligthelm, M. E., B. A. Prior, and J. C. Preez. 1988. The oxygen requirements of yeasts for the fermentation of d-xylose and d-glucose to ethanol. App. Microb. Biotechnol. 28, 63-68. https://doi.org/10.1007/BF00250500
  10. Lin, Y. and S. Tanaka. 2006. Ethanol fermentation from biomass resources: current state and prospects. Appl. Microbiol. Biotechnol. 69, 627-642. https://doi.org/10.1007/s00253-005-0229-x
  11. Matsushika, A. and S. Sawayama. 2008. Efficient bioethanol production from xylose by recombinant saccharomyces cerevisiae requires high activity of xylose reductase and moderate xylulokinase activity. J. Biosci. Bioeng. 106, 306-309. https://doi.org/10.1263/jbb.106.306
  12. Matsushika, A., S. Watanabe, T. Kodaki, K. Makino, and S. Sawayama. 2008. Bioethanol production from xylose by recombinant Saccharomyces cerevisiae expressing xylose reductase, NADP+-dependent xylitol dehydrogenase, and xylulokinase. J. Biosci. Bioeng. 105, 296-299. https://doi.org/10.1263/jbb.105.296
  13. Meyrial, V., J. P. Delgenes, C. Romieu, R. Moletta, and A. M. Gounot. 1995. Ethanol tolerance and activity of plasma membrane ATPase in Pichia stipitis grown on xylose or on glucose. Enzyme Microb. Technol. 17, 535-540. https://doi.org/10.1016/0141-0229(94)00065-Y
  14. Nigam, J. 2001. Development of xylose-fermenting yeast Pichia stipitis for ethanol production through adaptation on hardwood hemicellulose acid prehydrolysate. J. App. Microb. 90, 208-215. https://doi.org/10.1046/j.1365-2672.2001.01234.x
  15. Panchal, C. J., L. Bast, I. Russell, and G. G. Stewart. 1988. Repression of xylose utilization by glucose in xylose-fermenting yeasts. Can. J. Microbiol. 34, 1316-1320. https://doi.org/10.1139/m88-230
  16. Preez, J. C., M. Bosch, and B. A. Prior. 1986. The fermentation of hexose and pentose sugars by Candida shehatae and Pichia stipitis. Appl. Microbiol. Biotechnol. 23, 228-233. https://doi.org/10.1007/BF00261920
  17. Taniguchi, M., T. Tohma, T. Itaya, and M. Fujii. 1997. Ethanol production from a mixture of glucose and xylose by co-culture of Pichia stipitis and a respiratory-deficient mutant of Saccharomyces cerevisiae. J. Fermen. Bioeng. 83, 364-370. https://doi.org/10.1016/S0922-338X(97)80143-2
  18. Van Zyl, C., B. A. Prior, S. G. Kilian, and J. L. F. Kock. 1989. D-Xylose Utilization by Saccharomyces cerevisiae. J. Gen. Microbiol. 135, 2791-2798.
  19. Wall, J. D., C. S. Harwood, and A. Demain. 2008. BIOENERGY. pp. 3-6, ASM Press, Washington. DC.
  20. Williams, R. H. 1997. Methanol and hydrogen from biomass for transportation with comparisons to methanol and hydrogen from natural gas and coal. Fuel Energy 38, 78-79.
  21. Yoon, G. S., T. S. Lee, C. Kim, J. H. Seo, and Y. W. Ryu. 1996. Characterization of Alchol Fermentation and Segregation of Protoplast Fusant of Saccharomyces cerevisiae and Pichia stipitis. J. Microbiol. Biotechnol. 6, 286-291.

Cited by

  1. Effectiveness of Yeast Nutrients on Stuck Fermentation of Blueberry Wine vol.46, pp.2, 2014, https://doi.org/10.9721/KJFST.2014.46.2.143