Analysis of Genetic Diversity of Korean Accessions of the Genus Acorus Using RAPD Markers and NIR Spectroscopy

  • Lee, Ja-Hyun (Department of Horticulture, Chonnam National University) ;
  • Kim, In-Seon (Department of Biological Chemistry, Chonnam National University) ;
  • Lee, Seong-Gene (Department of Molecular Biotechnology, Bioenergy Research Center, Chonnam National University) ;
  • Rim, Kwang-Sub (Hampyeong County Agricultural Technology Center) ;
  • Kim, Sung-Gil (Department of Horticulture, Chonnam National University) ;
  • Han, Tae-Ho (Department of Horticulture, Chonnam National University)
  • Received : 2010.04.27
  • Accepted : 2011.04.16
  • Published : 2011.06.30

Abstract

The genus Acorus is known as an indigenous medicinal plant. Genetic diversity of thirteen accessions of A. calamus and eight of A. gramineus, with an accession of Colocasia antiquorum and two of Iris pseudacorus as outgroups, were evaluated using RAPD markers for cluster analysis and principal coordinate analysis, and NIR spectroscopic profiles for principal component analysis.A total of 371 polymorphic bands were obtained by using the selected 12 random primers. The genetic distances were estimated from 0.03 to 0.31 within A. calamus and from 0.03 to 0.51 within A. gramineus. The dendrogram and three-dimensional plot separated the accessions into four distinct groups (A. calamus, A. gramineus, C. antiquorum, and I. pseudacorus). Moreover, for the diversity among genus Acorus, eleven A. calamus accessions, one A. gramineus accession, and two I. pseudacorus accessions were non-destructively analyzed from their leaves by NIR spectroscopy, which discriminated Acorus accessions like the RAPD analysis. Interestingly, thirteen accessions of A. calamus were clustered into two groups based on RAPD and NIR analyses, which indicates that there are two ecotypes of A. calamus in Korea. An accession (CZ) of A. calamus with yellow stripe on leaves was closely grouped with another (CX) at a genetic distance (GD) of 0.03, which shows that the stripe trait might be generated by chimeric mutation. The genetic distance between A. calamus and A. gramineus was revealed to be farthest from 0.80 to 0.88 GD. In genus Acorus the genetic diversity and genetic variation were identified by using RAPD marker technique and non-destructive NIRs.

Keywords

References

  1. Bramble, T., F.E. Dowell, and T.J. Herrman. 2006. Single-kernel near-infrared protein prediction and the role of kernel weight in hard red winter wheat. Appl. Eng. Agr. 22:945-949.
  2. Choi, H.S. 2004. Aroma evaluation of an aquatic herb, Changpo (Acorus calamus var. angustatus Bess), by AEDA and SPME. J. Agric. Food Chem. 52:8099-8104. https://doi.org/10.1021/jf040239p
  3. Duvall, M.R., G.H. Learn, L.E. Eguiarte, and M.T. Clegg. 1993. Phylogenetic analysis of rbcL sequences identifies Acorus calamus as the primal extant monocotyledon. Proc. Natl. Acad. Sci. USA 90:4641-4644. https://doi.org/10.1073/pnas.90.10.4641
  4. Duvall, M.R., J.W. Robinson, J.G. Mattson, and A. Moore. 2008. Phylogenetic analysis of two mitochondrial metabolic genes sampled in parallel from angiosperms find fundamental interlocus incongruence. Amer. J. Bot. 95:871-884. https://doi.org/10.3732/ajb.2007310
  5. Efron, B. and G. Gong. 1983. A leisurely look at the bootstrap, the jacknife, and cross-validation. Amer. Stat. 37:36-48.
  6. Felsenstein, J. 1985. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783-791. https://doi.org/10.2307/2408678
  7. Galtier, O., N. Dupuy, and Y. Le Dreau. 2007. Geographic origins and compositions of virgin olive oils determinated by chemometric analysis of NIR spectra. Analytica. Chimica. Acta. 595:136-144. https://doi.org/10.1016/j.aca.2007.02.033
  8. Gilani, A.H., A.J. Shah, M. Ahmad, and F. Shaheen. 2006. Antispasmodic effect of Acorus calamus Linn. is mediated through calcium channel blockade. Phytother. Res. 20:1080-1084. https://doi.org/10.1002/ptr.2000
  9. Ghosh, M. 2006. Antifungal properties of haem peroxidase from Acorus calamus. Annal. Bot. 98:1145-1153. https://doi.org/10.1093/aob/mcl205
  10. Gower, J.C. 1966. Some distance properties of latent root and vector methods used in multivariate analysis. Biometrika 53: 325-338.
  11. Grayum, M.H. 1987. A summary of evidence and arguments supporting the removal of Acorus from the Araceae. Taxon. 36:723-729. https://doi.org/10.2307/1221123
  12. Han, W.J. 2003. Comparative effects of Radix polygalae and rhizoma Acorus graminei on CT105-induced neuroblastoma cell lines. Wonkwang Univ., Korea p. 1-31.
  13. Hwang, M.S. 2004. Hair protective effect of water extracts from Acorus calamus leaf. Catholic Univ., Korea p. 1-24.
  14. Jaillaisa, C., R. Pintob, A.S. Barrosb, and D.N. Rutledge. 2005. Outer-product analysis (OPA) using PCA to study the influence of temperature on NIR spectra of water. Vibrat. Spectros. 39:50-58. https://doi.org/10.1016/j.vibspec.2004.10.008
  15. Ka, M.H., E.H. Choi, H.S. Chun, and H.G. Lee. 2005. Antioxidative activity of volatile extracts isolated from Angelica tenuissimae roots, peppermint leaves, pine needles, and sweet flag leaves. J. Agric. Food Chem. 53:4124-4129. https://doi.org/10.1021/jf047932x
  16. Kim, K.S., S.H. Park, M.G. Choung, and Y.S. Jang. 2007. Use of near-infrared spectroscopy for estimating fatty acid composition in intact seeds of rapeseed. J. Crop Sci. Biotech. 10:15-20.
  17. Lee, J.S. and B.M. Kim. 2005. Analysis of genetic relationship among Arisaema species using RAPD. Kor. J. Hort. Sci. Technol. 23:459-464.
  18. Li, X., Y. He, and H. Fang. 2007. Non-destructive discrimination of Chinese bayberry varieties using vis/NIR spectroscopy. J. Food Eng. 81:357-363. https://doi.org/10.1016/j.jfoodeng.2006.10.033
  19. Liao, L.C. and J.Y. Hsiao. 1998. Relationship between population genetic structure and riparian habitat as revealed by RAPD analysis of the rheophyte Acorus gramineus Soland. (Araceae) in Taiwan. Mol. Ecol. 7:1275-1281. https://doi.org/10.1046/j.1365-294x.1998.00438.x
  20. Liu, Y.D., Y.B. Ying, and X. Fu. 2007. Experiments on predicting sugar content in apples by FT-NIR technique. J. Food Eng. 80:986-989. https://doi.org/10.1016/j.jfoodeng.2006.06.035
  21. Min, G.T. and W.S. Kang. 2003. Nondestructive separation of viable and nonviable gourd (Lagenaria siceraria) seeds using single seed near infrared spectroscopy. J. Kor. Soc. Hort. Sci. 44:545-548.
  22. Mulualem, T. 2003. Characterization of forest tree seed quality with near infrared spectroscopy and multivariate analysis. Swedish Univ. Sweden p. 1-43.
  23. Nei, M. and W.H. Li. 1979. Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc. Natl. Acad. Sci. USA 76:5269-5273. https://doi.org/10.1073/pnas.76.10.5269
  24. Oh, C.H., N.S. Kim, K.H. Lee, T.H. Kim, J.B. Bae, S.G. Kim, H. Jeon, J.P. Kim, T.Y. Shin, C.H. Lee, S.I. Jeong, and, J. Kwon. 2007. Immuno-regulatory and anti-cancer effect of Acorus gramineus Solander. Kor. J. Oriental. Physiol. Pathol. 21:869-873.
  25. Pai, A. 2005. The population ecology of a perennial clonal herb Acorus calamus L. (Acoraceae) in southeast Ohio, USA. Ph.D. Diss. Ohio Univ., USA p. 1-153.
  26. Park, C., S.I. Kim, and Y.J. Ahn. 2003. Insecticidal activity of asarones identified in Acorus gramineus rhizome against three coleopteran stored-product insects. J. Stored Prod. Res. 39:333-342. https://doi.org/10.1016/S0022-474X(02)00027-9
  27. Phongpaichit, S., N. Pujenjob, V. Rukachaisirikul, and M. Ongsakul. 2005. Antimicrobial activities of the crude methanol extract of Acorus calamus Linn. Songklanakarin J. Sci. Technol. 27:517-523.
  28. Ray, T.S. 1987. Leaf types in the Araceae. Amer. J. Bot. 74: 1359-1372. https://doi.org/10.2307/2444314
  29. Rohlf, F.J., 1997. NTSYS-pc numerical taxonomy and multivariate analysis system, ver. 2.0. Exeter Pub., New York.
  30. Rohlf, F.J. and R.R. Sokal. 1981. Comparing numerical taxonomic studies. Systematic Zool. 30:459-490. https://doi.org/10.2307/2413054
  31. Seregelya, Z., T. Deak, and G.D. Bisztrayo. 2004. Distinguishing melon genotypes using NIR spectroscopy. Chemom. Intell. Lab. Syst. 72:195-203. https://doi.org/10.1016/j.chemolab.2004.01.013
  32. Shao, Y., Y. He, A.H. Gómez, A.G. Pereir, Z. Qiu, and Y. Zhang. 2007. Visible/near infrared spectrometric technique for nondestructive assessment of tomato 'Heatwave' (Lycopersicume sculentum) quality characteristics. J. Food Eng. 81:672-678. https://doi.org/10.1016/j.jfoodeng.2006.12.026
  33. Sneath, P.H.A. and R.R. Sokal. 1973. Numerical taxonomy: the principles and practice of numerical classification. San Francisco: W.H. Freeman. p. 573.
  34. The Angiosperm Phylogeny Group (APG II). 2003. An update of the angiosperm phylogeny group classification for the orders and families of flowering plants. Bot. J. Linn. Soc. 141:399-436. https://doi.org/10.1046/j.1095-8339.2003.t01-1-00158.x
  35. Thompson, S.A. 1995. Systematics and biology of the Araceae and Acoraceae of temperate NorthAmerica. PhD diss., Illinois Univ., Urbana-Champaign. p. 124-127.
  36. Van De Peer, Y. and R. De Wachter. 1993. TREECON: a software package for the construction and drawing of evolutionary trees. Comput. Applic. Biosci. 9:177-182.
  37. Williams, J.G.K., A.R. Kubelik, K.J. Livak, J.A. Rafalski, and, S.V. Tingey. 1990. DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Res. 18:6531-6535. https://doi.org/10.1093/nar/18.22.6531
  38. Yuzbasıoglu, E., M.Y. Dadand, and S. Ozcan. 2008. Natural hybridization between Phlomislycia D. Don ${\times}$ P. bourgaei Boiss., (Lamiaceae) revealed by RAPD markers. Genetica 133:13-20. https://doi.org/10.1007/s10709-007-9177-y