Control Efficacy of Gray Mold on Strawberry Fruits by Timing of Chemical and Microbial Fungicide Applications

살균제와 미생물제 처리시기에 따른 딸기 잿빛곰팡이병 방제효과

  • Nam, Myeong-Hyeon (Nonsan Strawberry Experiment Station, Chungcheongnam-do Agricultural Research & Extension Services) ;
  • Kim, Hyeon-Suk (Nonsan Strawberry Experiment Station, Chungcheongnam-do Agricultural Research & Extension Services) ;
  • Lee, Won-Keun (Nonsan Strawberry Experiment Station, Chungcheongnam-do Agricultural Research & Extension Services) ;
  • Gleason, Mark L. (Department of Plant Pathology, Iowa State University) ;
  • Kim, Hong-Gi (Department of Applied Biology, Chungnam National University)
  • 남명현 (충남농업기술원 논산딸기시험장) ;
  • 김현숙 (충남농업기술원 논산딸기시험장) ;
  • 이원근 (충남농업기술원 논산딸기시험장) ;
  • ;
  • 김홍기 (충남대학교 응용생물학과)
  • Received : 2010.11.15
  • Accepted : 2011.02.22
  • Published : 2011.04.30

Abstract

The fungus Botrytis cinerea causes fruit rot of strawberry and the damages can result in harvest losses upto 50%. Proper timing of fungicide application is essential for successful control of Botrytis fruit rot, fenhexamid plus iminoctadine tris, cyprodinil plus fludioxonil, fludioxonil alone, and Bacillus subtilis QST713 were applied to individual buds, flowers, and green and red fruit of cultivar 'Seolhyang' ex vivo. Cyprodinil plus fludioxonil or fludioxonil alone was applied i) before and after a 5-hr period of low-temperature ($0^{\circ}C$) incubation ex vivo ii) in field trials. Strawberry flowers and red fruit were more susceptible to B. cinerea than the green fruits. Incidence of Botrytis rot with fenhexamid plus iminoctadine tris and cyprodinil plus fludioxonil was the lowest at flowering, whereas B. subtilis QST713 did not significantly among treatments. In 2010, incidence of Botrytis fruit rot was significantly reduced when fludioxonil was applied two times at 1 week intervals from 50% bloom in field trials. Cultivars Redpearl and Seolhyang were more susceptible to low-temperature than cvs. Maehyang and Akihime. Cyprodinil plus fludioxonil application was effective when applied before onset of the low-temperature treatment period. Fludioxonil showed the most effective when it was sprayed one and more than two times in before and post low-temperature condition, respectively. These results demonstrate that fungicide selection and timing can interact with stage of fruit development and low-temperature in determining effectiveness of suppression of Botrytis fruit rot.

Botrytis cinerea에 의한 딸기 잿빛곰팡이병은 최대 50%까지 발생하여 큰 피해를 주는 딸기의 주요 병해이다. 약제살포시기는 잿빛곰팡이병의 성공적인 방제를 좌우하는 필수적 요소이다. 딸기 '설향' 품종에 대한 잿빛곰팡이병 방제효과 검정을 위해 fenhexamid + imonoctadine tris, cyprodinil + fludioxonil, Bacillus subtilis QST713을 ex vivo에서 개화전, 개화기, 미착색과, 성숙과 단계부터 처리하여 효과를 비교하였다. 또한 '설향' 품종을 공시하여 ex vivo와 재배포장에서 cyprodinil + fludioxonil 혹은 fludioxonil을 저온($0^{\circ}C$, 5시간) 전후 처리하여 잿빛곰팡이병 방제효과를 조사하였다. 딸기 꽃과 성숙과실은 미착색과실보다 B. cinerea에 더 감수성이었다. ex vivo에서 개화단계별 약제방제효과는 fenhexamid + iminoctadine tris는 개화직전과 개화기, cyprodinil + fludioxonil은 개화기에 효과적이었으나 Bacillus subtilis QST713은 처리간 유의성이 없었다. 2010년 딸기 잿빛곰팡이병 방제효과는 fludioxonil을 개화기에 1주일 간격으로 2회 처리시 효과적이었다. 딸기 'Redpearl'과 '설향' 품종은 '매향'과 'Akihime' 품종보다 저온에 더 감수성이어서 주의를 요했으며 cyprodinil + fludioxonil을 저온처리 전에 살포시 90%이상의 방제효과를 나타냈다. 2010년 재배포장에서 잿빛곰팡이병 방제효과는 저온 발생 전 혹은 저온 발생 후 1주일 간격 2-3회 fludioxonil처리가 효과적이었다. 이런 결과로 딸기 잿빛곰팡이병 방제를 위한 약제의 효과적인 처리시기는 개화와 저온이 밀접한 관련이 있음을 알 수 있었다.

Keywords

References

  1. Braun, P.G. and J.C. Sutton. 1987. Inoculum sources of Botrytis cinerea in fruit rot of strawberries in Ontario. Can. J. Plant Pathol. 9:1-5. https://doi.org/10.1080/07060668709501903
  2. Bristow, P.R., R.J. McNicol, and B. Williamson. 1986. Infection of strawberry flowers by Botrytis cinerea and its relevance to grey mould development. Ann. Appl. Biol. 109:545-554. https://doi.org/10.1111/j.1744-7348.1986.tb03211.x
  3. Cadle-Davidson, L. 2008. Monitoring pathogenesis of natural Botrytis cinerea infections in developing grape berries. Am. J. Enol. Vitic. 59:387-395.
  4. Jarvis, W.R. 1962. The infection of strawberry and raspberry fruits by Botrytis cinerea Fr. Ann. Appl. Biol. 50:569-575. https://doi.org/10.1111/j.1744-7348.1962.tb06049.x
  5. Korea Crop Protection Association (KCPA). 2010. 2010 Agrochemicals use guide book. KCPA, Seoul.
  6. Korean Statistical Information Service (KOSIS). 2010. 2009 the production of vegetable. http://kosis.kr.
  7. Korea Rural Economic Institute (KREI). 2010. Outlook of agriculture 2010. KREI, Seoul p. 820-826.
  8. Legard, D.E., C.L. Xiao, J.C. Mertely, and C.K. Chandler. 2001. Management of Botrytis fruit rot in annual winter strawberry using captan, thiram and iprodione. Plant Dis. 85:31-39. https://doi.org/10.1094/PDIS.2001.85.1.31
  9. Legard, D.E., S.J. MacKenzie, J.C. Mertely, C.K. Chandler, and N.A. Peres. 2005. Development of a reduced use fungicide program for control of Botrytis fruit rot on annual winter strawberry. Plant Dis. 89:1353-1358. https://doi.org/10.1094/PD-89-1353
  10. Mass, J.L. 1998. Compendium of strawberry diseases 2rd edition. APS press.
  11. Mertely, J.C., S.J. MacKenzie, and D.E. Legard. 2002. Timing of fungicide applications for Botrytis cinerea based on development stage of strawberry flowers and fruit. Plant Dis. 86: 1019-1024. https://doi.org/10.1094/PDIS.2002.86.9.1019
  12. Mertely, J.C., T.E. Seijo, S.J. MacKenzie, C. Moyer, and N.A. Peres. 2009. Effect of timing of preharvest fungicide applications on postharvest Botrytis fruit rot of annual strawberries in Florida. Plant Health Progress doi:10.1094/PHP-2009-0921-01-RS.
  13. Nam, M.H., Y.G. Nam, T.I. Kim, H.S. Kim, W.S. Jang, W.K. Lee, I.H. Lee, H.K. Kang, Y.J. Park, J.M. Choi, and K.S. Whang. 2009. Compendium of strawberry diseases and pests. Chungnam Strawberry Association.
  14. Powelson, R.L. 1960. Initiation of strawberry fruit rot caused by Botrytis cinerea. Phytopathology 50:491-494.
  15. Rosslenbroich, H.J. and D. Stuebler. 2000. Botrytis cinerea-history of chemical control and novel fungicides for its management. Crop Protection 19:557-561. https://doi.org/10.1016/S0261-2194(00)00072-7
  16. Rural Development Administration (RDA). 2010. 2010 New technology of agriculture and food (IV). p. 1357.
  17. Stromeng, G.M., L.G, Hjeljord, and A. Stensvand. 2009. Relative contribution of various sources of Botrytis cinerea inoculum in strawberry fields in Norway. Plant Dis. 93:1305-1310. https://doi.org/10.1094/PDIS-93-12-1305
  18. Wilcox, W.F. and R.C. Seem. 1994. Relationship between strawberry gray mold incidence, environmental variables, and fungicide applications during different periods of the fruiting season. Phytopathology 84:264-270. https://doi.org/10.1094/Phyto-84-264
  19. Xu, X.M., D.C. Harris, and A.M. Berrie. 2000. Modeling infection of strawberry flowers by Botrytis cinerea using field data. Phytopathology 90:1367-1374. https://doi.org/10.1094/PHYTO.2000.90.12.1367