Root-zone Temperature Control of Tomato Plant Cultivated in Perlite Bag during Summer Season

고온기 펄라이트 자루재배시 최적 근권온도 조절방법

  • Kim, Sung-Eun (Department of Plant and Food Science, Sangmyung University) ;
  • Kim, Young-Shik (Department of Plant and Food Science, Sangmyung University) ;
  • Sim, Sang-Youn (Horticultural Industry Research Division, Gyeonggi-do Agricultural Research & Extension Services)
  • 김성은 (상명대학교 식물산업공학과) ;
  • 김영식 (상명대학교 식물산업공학과) ;
  • 심상연 (경기도농업기술원 원예산업연구과)
  • Received : 2010.12.28
  • Accepted : 2011.02.15
  • Published : 2011.04.30

Abstract

This research was conducted to establish efficient methods to control root-zone temperature of tomato plant when cultivated in perlite bag during the summer season. Tomato plants were grown with four selected treatments; covering irrigation pipe by aluminum insulation material (Insulate), discarding nutrient solution inside the irrigation line before each irrigation (Discard), skipping irrigation for two hours from 13:00 to 15:00 (Skip), or no treatment as a control (Non). Based on the analysis of plant development index, all plants with selected treatments grew more vigorous and vegetative in similar growth patterns. The discard treatment exhibited the best root-zone temperature control among the treatments. The discard treatment also resulted in the best root growth and above-ground growth, followed by skip, Insulate and Non. The total yields were obtained by the order of Insulate, Discard, Non and Skip. However the marketable yield was obtained by the order of Discard, Insulate, Skip and Non. The net incomes treated with Discard and Insulate were 9,687,600 and 9,396,000 Korean won per hectare, respectively, exhibiting higher incomes than that of Non. Therefore, it was concluded that insulation of the irrigation pipe and discarding nutrient solution inside the pipe before each irrigation were the most desirable and economical methods in terms of costs and yields.

고온기 토마토 펄라이트 자루재배에서 효과적인 근권온도 조절방법을 구명하고자 실험을 수행하였다. 실험처리로는 급액온도를 낮추기 위해 급액관을 단열재로 감싸주는 처리(Insulate), 매회 급액시 급액관에 있는 뜨거운 배양액을 빼고 급액하는 처리(Discard), 일중 가장 더운 오후 1시-3시에 급액을 중단하는 처리(Skip)와 무처리구(Non)를 두었다. 식물생육지표 조사에서는 실험구 모두 생장강도가 강해지고 생장균형이 영양생장으로 움직였으나, 처리별로는 큰 차이가 없었다. 고온기 근권온도는 Discard처리에서 가장 효과적으로 조절되었고, 지하부 생육은 Discard처리, Skip처리, Insulate처리 및 무처리구(Non) 순으로 좋았고, 지상부의 생육은 Discard처리에서 가장 우수하였다. 총수확량은 Insulate처리에서 가장 많았고, Discard처리, 무처리구(Non) 및 Skip처리 순으로 많았으나, 상품과량은 Discard처리와 Insulate처리에서 비슷하게 많았으며, Skip처리 및 무처리구(Non) 순으로 많았다. 순수익도 ha 기준으로 무처리구보다 Discard처리에서 9,687,600원, Insulate처리에서 9,396,000원 더 많았다. 따라서 설치작업이 간단하며 비용이 적게 드는 Insulate처리와 Discard처리를 함께 처리하는 것이 설치를 위한 노동력과 비용적인 면을 감안하여도 가장 경제적인 것으로 사료된다.

Keywords

References

  1. Adams, S.R., K.E. Cockshul, and C.R.J. Cave. 2001. Effect of temperature on the growth and development of tomato fruits. Ann. of Bot. 88:869-877.
  2. Asher, C.J., P.G. Ozanne, and J.F. Loneragn. 1965. A method for controlling the ionic environment of plant roots. Soil Sci. 100:149-156. https://doi.org/10.1097/00010694-196509000-00001
  3. Ashraf, M. and M. R. Foolad. 2005. Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environmental Experimental Bot. 59:206-216.
  4. Calatayud, A., E. Gorbea, D. Roca, and P.F. Martinez. 2008. Effect of two nutrient solution temperatures on nitrate uptake, nitrate reductase activity, $NH_{4}^{+}$ concentration and chlorophyll a fluorescence in rose plants. Environmental Experimental Bot. 64:65-74. https://doi.org/10.1016/j.envexpbot.2008.02.003
  5. Choi, Y.H., J.K. Kwon, H.C. Rhee, D.K. Park, and J.H. Lee. 2001. Effects of night temperatures on growth, yields of tomato and green pepper in the glasshouse cultivation and its impact on heating costs. J. Kor. Soc. Hort. Sci. 42:385-388.
  6. Dalton, F.N., A. Maggio, and G. Piccinni. 1997. Effect of root temperature on plant response functions for tomato: comparison of static and dynamic salinity stress indices. Plant Soil 192:307-319. https://doi.org/10.1023/A:1004263505595
  7. Diaz-Perez, J.C., R. Gitaitis, and B. Mandal. 2007. Effects of plastic mulches on root zone temperature and on the manifestation of tomato spotted wilt symptoms and yield of tomato. Scientia Horticulturae 114:90-95. https://doi.org/10.1016/j.scienta.2007.05.013
  8. Du, Y.C. and S. Tachibana. 1994. Effect of supraoptimal root temperature on the growth, root respiration and sugar content of cucumber plants. Scientia Horticulturae 58:289-301. https://doi.org/10.1016/0304-4238(94)90099-X
  9. Giuffrida, F. 2001. Temperature of substrates in relation to trough characteristics. Acta Hort. 559:647-654.
  10. James, A.T., H.A. Mills, and D.E. Radcliffe. 1990. The effect of root zone temperature on nutrient uptake of tomato. J. Plant Nutr. 13:939-956. https://doi.org/10.1080/01904169009364127
  11. Jones, J.B. 1999. Tomato plant culture: in the field, greenhouse and home garden. CRS Press, Corporate Blvd., Boca Raton, Florida, USA. p. 94.
  12. Kafkafi, U. 2001. Root zone parameters controlling plant growth in soilless culture. Acta Hort. 554:27-38.
  13. Kalefetolu, T. and Y. Ekmekçi. 2010. The effects of drought on plants and tolerance mechanisms. Gazi University J. Sci. 18: 723-740.
  14. Kennedy, R. and G.F. Pegg. 1990. Phytophthora cryptogea root rot of tomato in rock wool nutrient culture. II. Effect of root zone temperature on infection, sporulation and symptom development. Ann. Applied Biol. 117:537-551. https://doi.org/10.1111/j.1744-7348.1990.tb04820.x
  15. Kennedy, R., G.F. Pegg, and S.J. Welham. 2008. Phytophthora cryptogea root rot of tomato in rockwool nutrient culture: III. Effect of root zone temperature on growth and yield of winter-grown plants. Ann. Applied Biol. 123:563-578.
  16. Kim, S.E., S.Y. Sim, S.D. Lee, and Y.S. Kim. 2010. Appropriate Root-Zone Temperature Control in Perlite Bag Culture in Winter. Kor. J. Hort. Sci. Technol. 28:783-789.
  17. Kim, Y.S. 2003. Possibility of water management in hydroponics by electrical signal. Industrial Science Researches of Sangmyung University 14:1-10.
  18. Kliewer, W.M. 1977. Effect of high temperatures during the bloom-set period on fruit-set, ovule fertility, and berry growth of several grape cultivars. J. Enol. Vitic. 28:215-222.
  19. Lee, H.W., Y.S. Kim, S.H. Yoo, S.Y. Sim, and S. Diop. 2010. Cooling effect analysis of fog system in commercial tomato greenhouse. J. Bio-Env. Con. 19:187-188.
  20. Marcelis, L.F.M. and J.V. Hooijdonk. 1999. Effect of salinity on growth, water use and nutrient use in radish (Raphanus sativus L.). Plant Soil 215:57-64. https://doi.org/10.1023/A:1004742713538
  21. Meloni, D.A., M.A. Oliva, C.A. Martinez, and J. Cambraia. 2003. Photosynthesis and activity of superoxide dismutase, peroxidase and glutathione reductase in cotton under salt stres. Environmental Experimental Bot. 49:69-76. https://doi.org/10.1016/S0098-8472(02)00058-8
  22. Peet, M.M., D.H. Willits, and R. Gardner. 1996. Response of ovule development and post-pollen production processes in male-sterile tomatoes to chronic, sub-acute high temperature stress. J. Experimental Bot. 48:101-111.
  23. Rylski, L. and M. Spigelman. 1982. Effects of different diurnal temperature combinations on fruit set of sweet pepper. Scientia Horticulturae 17:101-106. https://doi.org/10.1016/0304-4238(82)90001-2
  24. Sim, S.Y., S.Y. Lee, S.W. Lee, M.W. Seo, J.W. Lim, S.J. Kim, and Y.S. Kim. 2006. Characteristics of Root Media Moisture in Various Irrigation Control Methods for Tomato Perlite Bag Culture. J. Bio-Env. Con. 15:225-230.
  25. Steduto, P., R. Albrizio, P. Giorio, and G. Sorrentino. 2000. Gasexchange response and stomatal and nonstomatal limitations to carbon assimilation of sunflower under salinity. Environ. Exp. Bot. 44:243-255. https://doi.org/10.1016/S0098-8472(00)00071-X
  26. Tester, M. and R. Davenport. 2003. $Na^{+}$ tolerance and $Na^{+}$ transport in higher plants. Ann. Bot. 91:503-527. https://doi.org/10.1093/aob/mcg058
  27. Verma, B.P. 1979. Container design for reducing root zone temperature. Proc. Southern Nurs. Assoc. Res. Conf. 24:179-182.