DOI QR코드

DOI QR Code

Computational Modeling of Charge-Discharge Characteristics of Lithium-Ion Batteries

리튬이온 전지의 충방전 특성에 대한 전산 모델링

  • Lee, Dae-Hyun (Department of Chemical Engineering, Kwangwoon University) ;
  • Yoon, Do-Young (Department of Chemical Engineering, Kwangwoon University)
  • 이대현 (광운대학교 화학공학과/녹색기술연구소) ;
  • 윤도영 (광운대학교 화학공학과/녹색기술연구소)
  • Received : 2011.10.03
  • Accepted : 2011.11.22
  • Published : 2011.12.31

Abstract

Computational modelling and simulation for the charge-discharge characteristics of Lithium-ion batteries have been carried out. The battery system consists of a simplified 2-dimensional single cell for the modelling, in which the thermal modelling on the charge-discharge characteristics was conducted in the temperature range from 288 K through 318 K by using FEMLAB as an engineering PDE solver. While material parameters adopted in the present modelling were dependent on the system temperature, their thermal modelling were applied on the simulations of the charge-discharge period and the rate of transferring charges systematically. The resulting simulation shows that the cycle of the charge-discharge shorten itself by reducing the system temperature, regardless of the charge-discharge rates. In addition, the mass-transport phenomena of Lithium ion have been discussed in connection with the charge-discharge characteristics in the battery.

본 연구에서는 리튬이온 전지의 충 방전 특성에 관한 모델링과 전산모사를 수행하였다. 전지의 시스템 구성은 단순화된 2차원 형태의 단일셀에 대하여 모델링하였고, 공학적 편미분방정식 풀이자인 FEMLAB을 이용하여 288 K와 318 K 범위내에서 충방전 특성에 대한 열적 모델링을 수행하였다. 모델링에 채택한 물성치 변수들에 대하여 온도특성을 고려하였으며, 이를 통하여 전지의 특징적인 충방전의 사이클 변화와 충방전 전하량의 변화를 체계적으로 전산모사하였다. 그 결과 충방전 속도에 상관없이 충방전의 주기가 온도가 낮아질수록 짧아짐을 정량적으로 해석할 수 있었다. 이에 부가하여 전지내에서 리튬이온의 물질전달 현상을 해석하여, 전지의 충방전 특성과의 상관관계를 고찰하였다.

Keywords

References

  1. Winter, M. and Brodd, R. J.: "What are batteries, fuel cells, and supercapacitors?", Chemical Review, Vol. 104, 4245-4269, (2004). https://doi.org/10.1021/cr020730k
  2. Fuller, T.F., Doyle, M., and Newman, J.: "Simulation and optimization of the dual lithium ion insertion cell", J. Electrochem. Soc., Vol. 141(1), 1-10, (1995).
  3. Doyle, M. and Newman, J.: "Comparison of modeling predictions with experimental data from plastic lithium ion cells", J. Electrochem. Soc., Vol. 143(6), 1890-1899. (1996). https://doi.org/10.1149/1.1836921
  4. Arora, P., Doyle, M., Gozdz, A. S., White, R .E. and Newman, J.: "Comparison between computer simulations and experimental data for high-rate discharges of plastic lithium-ion batteries", J. Power Sources., Vol. 88, 219-231, (2000). https://doi.org/10.1016/S0378-7753(99)00527-3
  5. Pals, R, C. and Newman, J.: "Thermal modeling of the lithium/polymer battery", J. Electrochem. Soc., Vol. 142, 3274-3281 (1995). https://doi.org/10.1149/1.2049974
  6. Valoen, L. O. and Reimers, J.N.: "Transport Properties of LiPF6-based Li-ion battery electrolytes", J. Electrochem. Soc., Vol. 152(5), A882-A891, (2005). https://doi.org/10.1149/1.1872737
  7. Kumaresan, K., Sikha, G., White, R.E.: "Thermal medel for a Li-ion cell", J. Electrochem. Soc., Vol. 155(2), A164-A171, (2008). https://doi.org/10.1149/1.2817888
  8. Doyle, M., Fuller, T. F., and Newman, J.: "Modeling of galvanostatic charge and discharge of the lithium/ polymer/insertion cell", J. Electrochem. Soc., Vol. 140(6), 1526-1533, (1993). https://doi.org/10.1149/1.2221597
  9. Sihka, G., Popov, N. B., and White, R. E.: "Effect of porosity on the capacity fade of a lithium-ion battery", J. Electrochem. Soc., Vol. 151(7), A1104-A1114, (2004). https://doi.org/10.1149/1.1759972

Cited by

  1. Development and Evaluation of Multi-string Power Balancing System for Solar Streetlight vol.25, pp.12, 2012, https://doi.org/10.4313/JKEM.2012.25.12.1021
  2. Evaluation Modeling Heat Generation Behavior for Lithium-ion Battery Using FEMLAB vol.18, pp.3, 2012, https://doi.org/10.7464/ksct.2012.18.3.320
  3. Improve the Efficiency of Hybrid Solar LED Street Lamp Controller vol.28, pp.2, 2015, https://doi.org/10.4313/JKEM.2015.28.2.131
  4. A CFD Modeling of Heat Generation and Charge-Discharge Behavior of a Li-ion Secondary Battery vol.19, pp.3, 2016, https://doi.org/10.5229/JKES.2016.19.3.114
  5. Computational Simulation on Power Prediction of Lithium Secondary Batteries by using Pulse-based Measurement Methods vol.1, pp.1, 2015, https://doi.org/10.18770/KEPCO.2015.01.01.033