DOI QR코드

DOI QR Code

Screening of Bacteriocin-producing Bacillus Strains Isolated from Domestic Animal Feces for Antagonistic Activities against Clostridium perfringens

  • Han, Sun-Kyung (College of Veterinary Medicine, Chungbuk National University) ;
  • Choi, Hyun-Jong (College of Veterinary Medicine, Chungbuk National University) ;
  • Lee, Sang-Myeong (College of Environmental & Bioresource Sciences, Chonbuk National University) ;
  • Shin, Myeong-Su (College of Veterinary Medicine, Chungbuk National University) ;
  • Lee, Wan-Kyu (College of Veterinary Medicine, Chungbuk National University)
  • Received : 2011.03.16
  • Accepted : 2011.06.08
  • Published : 2011.06.30

Abstract

The purpose of this study was to isolate and characterize bacteriocin-producing bacteria against Clostridium perfringens from domestic animals to determine their usefulness as probiotics. The feces of cattle and chicken were used as sources to isolate bacteriocin-producing bacteria using the spot-on-lawn method. In total, 900 bacterial stains were isolated from domestic animal feces, and 19 strains were finally selected after determining the inhibitory activity against the pathogenic indicator C. perfringens KCTC 3269. Eighteen strains of Bacillus subtilis and one strain of Brevibacillus parabrevis were identified by 16s rRNA sequencing. Most of the bacterial strains isolated were resistant to 0.5% bile salts and remained viable after 2 h at pH 3.0. Additionally, some B. subtilis strains showed strong inhibitory activity against Listeria monocytogenes. We isolated and screened B. subtilis strains CB 153 and CB 189 from cattle and B. subtilis MSC 156 and B. parabrevis MSC 164 from chickens using probiotic selection criteria such as inhibition activity against C. perfringens and tolerance to acid and bile salts. The isolated bacteriocin-producing bacteria and/or bacteriocin have the potential to be used as probiotics in the livestock industry.

Keywords

References

  1. Abriouel, H., Franz, C. M., Omar, N. B., and Galvez, A. (2011) Diversity and applications of Bacillus bacteriocins. FEMS Microbiol. Rev. 35, 201-232. https://doi.org/10.1111/j.1574-6976.2010.00244.x
  2. Alander, M. Satokari, R., Korpela, R., Saxelin, M., Vilpponen- Salmela, T., Mattila-Sandholm, T., and von Wright, A. (1999) Persistence of colonization of human colonic mucosa by a probiotic strain, Lactobacillus rhamnosus GG, after oral consumption. Appl. Environ. Microb. 65, 351-354.
  3. Chateau, N., Castellanos, I., and Deschamps, A. M. (1993) Distribution of pathogen inhibition in the Lactobacillus isolates of a commercial probiotic consortium. J. Appl. Bacteriol. 74, 36-40. https://doi.org/10.1111/j.1365-2672.1993.tb02993.x
  4. Cleveland, J., Montville, T. J., Nes, I. F., and Chikindas, M. L. (2001) Bacteriocins: safe, natural antimicrobials for food preservation. Int. J. Food Microbiol. 71, 1-20. https://doi.org/10.1016/S0168-1605(01)00560-8
  5. Cutting S. M. (2011) Bacillus probiotics. Food Microbiol. 28, 214-220. https://doi.org/10.1016/j.fm.2010.03.007
  6. Diez-Gonzalez, F. (2007) Applications of bacteriocins in livestock. Curr. Issues Intestinal Microbiol. 8, 15-23.
  7. Fuller, R. (1989) Probiotics in man and animals. J. Appl. Bacteriol. 66, 365-378. https://doi.org/10.1111/j.1365-2672.1989.tb05105.x
  8. Gillor, O., Kirkup, B. C., and Riley, M. A. (2004) Colicins and microcins: the next generation antimicrobials. Adv. Appl. Microbiol. 54, 129-146. https://doi.org/10.1016/S0065-2164(04)54005-4
  9. Graham, D. C. and McKay, L. L. (1985) Plasmid DNA in strains of Pediococcus cerevisiae and Pediococcus pentosaceus. Appl. Environ. Microb. 50, 532-534.
  10. Hammerman, C., Bin-Nun, A., and Kaplan, M. (2006) Safety of probiotics: comparison of two popular strains. BMJ 333, 1006-1008. https://doi.org/10.1136/bmj.39010.630799.BE
  11. Hatheway, C. L. (1990) Toxigenic clostridia. Clin. Microbiol Rev. 3, 66-98.
  12. Hechard, Y. and Sahl, H. G. (2002) Mode of action of modified and unmodified bacteriocins from Gram-positive bacteria. Biochimie 84, 545-557. https://doi.org/10.1016/S0300-9084(02)01417-7
  13. Holt, J. G., Krieg, N. R., Sneath, P. H. A., Staley, J. T., and Williams, S. T. (1994) Bergey's Manual of Determinative Bacteriology. 9th ed, Williams and Wilkins. Baltimore, MA.
  14. Hurst, A. (1981) Nisin. Adv. Appl. Microbiol. 27, 85-123. https://doi.org/10.1016/S0065-2164(08)70342-3
  15. Ispolatovskaya, M. V. (1971) Type A Clostridium perfringens toxin. In: Microbiol toxins. Kadis, S., Montie, T. C., and Aji, S. J.(ed) Academic Press, NY, Vol. IIA, pp. 109-158.
  16. Jensen, B. B. (1998) The impact of feed additives on the microbial ecology of the gut in young pigs. J. Anim. Feed Sci. 7, 45-64.
  17. Klaenhammer, T. R. (1993) Genetics of bacteriocins produced by lactic acid bacteria. FEMS Microbiol. Rev. 12, 39-85. https://doi.org/10.1111/j.1574-6976.1993.tb00012.x
  18. Kosin, B. and Rakshit, S. K. (2006) Microbial and processing criteria for production of probiotics: a review. Food Technol. Biothech. 44, 371-379. https://doi.org/10.1016/j.fct.2005.08.009
  19. Lyon, W. J. and Glatz, B. A. (1993) Isolation and purification of propionicin PLG-1, a bacteriocin produced by a strain of Propionibacterium thoenii. Appl. Environ. Microb. 59, 83-88.
  20. Mayr-Harting, A., Hedges, A. J., and Berkeley, R. C. W. (1972) Methods for studying bacteriocins. In: Methods in Microbiology. Bergen, T. and Norris, J. R. (eds) Academic Press, London, pp. 315-422.
  21. Mazza, P. (1994) The use of Bacillus subtilis as an antidiarrhoeal microorganism. Boll. Chim. Farm. 133, 3-18.
  22. Nurmi, E. V., Schneitz, C. E., and Makela, P. H. (1983) Process for the production of a bacterial preparation. Canadian Patent no. 1151066.
  23. Ouwehand, A. C. and Vesterlund, S. (1998) Antimicrobial components from lactic acid bacteria. In: Lactic acid bacteria: Microbial Ecology and Functional Aspects. Salminen, S. and von Wright, A. (eds) Marcel Dekker Inc., NY, pp. 139-159
  24. Park, K. J. and Ryu. Y. W. (1995) Antibacterial activity of Lactobacillus sp. KJ-5 isolated from pig feces. Kor. J. Biotechnol. Bioeng. 10, 553-560.
  25. Pilasombut, K., Sakpuaram, T., Wajjwalku, W., Nitisinprasert, S., Swetwiwathana, A., Zendo, T., Fujita, K., Nakayama, J., and Sonomoto, K. (2006) Purification and amino acid sequence of a bacteriocins produced by Lactobacillus salivarius K7 isolated from chicken intestine. Songklanakarin J. Sci. Technol. 28, 121-131.
  26. Rood, J. I. and Cole, S. T. (1991) Molecular genetics and pathogenesis of Clostridium perfringens. Microbiol. Rev. 55, 621-648.
  27. Saarela, M., Mogensen, G., Fondén, R., Mättö, J., and Mattila- Sandholm, T. (2000) Probiotic bacteria: safety, functional and technological properties. J. Biotechnol. 84, 197-215. https://doi.org/10.1016/S0168-1656(00)00375-8
  28. Shin, M. S., Kim, H. M., Kim, K. T., Huh, C. S., Bae, H. S., and Baek, Y. J. (1999) Selection and characteristics of Lactobacillus acidophilus isolated from Korean feces. Kor. J. Food Sci. Technol. 31, 495-501.
  29. Steele, F. M. and Wright, K. H. (2001) Cooling rate effect on outgrowth of Clostridium perfringens in cooked, ready-toeat turkey breast roasts. Poult. Sci. 80, 813-816. https://doi.org/10.1093/ps/80.6.813
  30. Stern, N. J., Svetoch, E. A., Eruslanov, B. V., Perelygin, V. V., Mitsevich, E. V., Mitsevich, I. P., Pokhilenko, V. D., Levchuk, V. P., Svetoch, O. E., and Seal, B. S. (2006) Isolation of a Lactobacillus salivarius strain and purification of its bacteriocin, which is inhibitory to Campylobacter jejuni in the chicken gastrointestinal system. Antimicrob. Agents Chemother. 50, 3111-3116. https://doi.org/10.1128/AAC.00259-06
  31. Teo, A. Y. and Tan, H. M. (2005) Inhibition of Clostridium perfringens by a novel strain of Bacillus subtilis isolated from the gastrointestinal tracts of healthy chickens. Appl. Environ. Microb. 71, 4185-4190. https://doi.org/10.1128/AEM.71.8.4185-4190.2005
  32. Varadaraj, M. C., Devi, N., Keshava, N., and Manjrekar, S. P. (1993) Antimicrobial activity of neutralized extracellular culture filtrates of lactic acid bacteria isolated from a cultured Indian milk product ('dahi'). Int. J. Food Microbiol. 20, 259-267. https://doi.org/10.1016/0168-1605(93)90170-L
  33. Vlaemynck, G., Herman, L., and Coudijzer, K. (1994) Isolation and characterization of two bacteriocins produced by Enterococcus faecium strains inhibitory to Listeria monocytogenes. Int. J. Food Microbiol. 24, 211-225. https://doi.org/10.1016/0168-1605(94)90120-1
  34. West, C. A. and Warner, P. J. (1988) Plantacin B, a bacteriocin produced by Lactobacillus plantarum NCDO 1193. FEMS Microbiol. Lett. 46, 163-165.

Cited by

  1. Screening of Bacteriocin-producing Enterococcus faecalis Strains for Antagonistic Activities against Clostridium perfringens vol.34, pp.5, 2014, https://doi.org/10.5851/kosfa.2014.34.5.614
  2. , fed diets with different levels of fish-based and plant ingredients: A correlative approach with some plasma metabolites vol.24, pp.5, 2018, https://doi.org/10.1111/anu.12793