DOI QR코드

DOI QR Code

Oil boom과 파랑의 비선형상호작용을 고려한 Oil Boom의 누유특성

Failure Characteristics of Oil Boom Considering the Nonlinear Interaction of Oil Boom with Waves

  • 조용준 (서울시립대학교 토목공학과) ;
  • 윤대경 (서울시립대학교 대학원)
  • 투고 : 2011.04.20
  • 심사 : 2011.04.27
  • 발행 : 2011.06.30

초록

역동적인 파랑에 노출되는 경우 다양한 failure mode를 쉽게 드러내는 Oil boom의 성능을 개선하기 위해 가장 정교한 파랑모형인 spatially filtered Navier-Stokes 식을 LES (Large Eddy Simulation), 잔차응력에 대한 LDS (Lagrangian Dynamic Smagorinsky 모형), SPH (Smoothed Particle Hydrodynamics) 기법을 활용하여 해석하는 새로운 수치모형이 제언되었다. 이어 부유식 Oil Boom의 누유특성을 규명하기 위해 oil spill, progressive wave, oil boom의 상호작용을 oil boom이 계류삭에 고정되어있는 경우와 oil boom의 excursion이 허용된 경우에 대해 각각 수치모의 하였다. 모의결과 oil boom의 skirt 길이가 수심의 30% 이상이고 excursion이 허용된 경우 oil spill의 차폐 기능은 극대화되는 것으로 밝혀졌다. 이와 더불어 y = 1~2 m 사이에 오일막과 해수의 경계층에서 생성된 와류가 저면으로 확산되면서 시계방향과 반 시계방향의 와류가 엇갈리게 생성되는 coherent eddies가 관측되어 수리실험을 통해 그 존재가 알려진 Kelvin-Helmholz파의 성장과정과 계면으로부터의 일탈과정이 수치모의된 것으로 판단된다.

To develop more robust oil boom which is vulnerable to various failure mode under severe weather condition, highly accurate wave model is developed using Spatially filtered Navier-Stokes Eq., LDS (Lagrangian Dynamic Smagorinsky model) for residual stresses, SPH (Smoothed Particle Hydrodynamics). To clarify the hydraulic characteristics of floating type oil boom, we numerically simulate the behavior of oil spill around oil boom under very energetic progressive waves. At the first stage, we firmly anchored the oil boom, and then, allowed the excursion of the oil boom. It turns out that oil boom with skirt of enough length (longer than 30% of depth) effectively confines the oil spill even against very energetic waves. We can also observe obliquely descending vertical eddies between y = 1~2 m as horizontal vortices shedding at the interface of oil spill and water are diffused toward the bottom, which is believed to be the birth, growing and break-down of Kelvin-Helmholz wave.

키워드

참고문헌

  1. 조용준, 김권수 (2008). SPH을 활용한 3차원 비선형 파랑모형 개발, 대한토목학회논문집, 28(5), 559-573.
  2. 조용준, 김권수, 유하상 (2008). Swash대역에서의 해빈표사 부 유거동에 관한 연구, 대한토목학회논문집, 28(B), 95-109.
  3. 조용준, 이헌 (2007). Lagrangian Dynamic Smagronsky 난류모형과 SPH를 이용한 쇄파역에서의 비선형 천수거동에 관한 연구, 한국해안해양공학회지, 19(1), 81-96.
  4. Batchelor, C.K. (1975). Introduction to fluid dynamics. Cambridge University. Press, Cambridge, U.K.
  5. Brown, H. M., Goodman, R.H., An, D.F. and Bittner, J. (1997). Boom failure mechanism: Comparison of channel experiments with computer modeling result. Proc. of 20th AMOP Tech. Seminar, Vancouver, BC, Canada.
  6. Clavelle, E.J. and Rowe, R.D. (1993). Numerical simulation of oil boom failure by critical accumulation. Proc. of 16th AMOP Tech. Seminar, Calgary, AB, Canada, June 7-9, 409-418
  7. Crespo, A.J.C., Gomez-Gesteira, M. and Dalrymple, R.A. (2007). 3D SPH simulation of large waves mitigation with a dike. Journal of Hydraulic Research, 45(5), 631-642. https://doi.org/10.1080/00221686.2007.9521799
  8. Dalrymple, R.A. and Knio, O. (2000). SPH Modeling of water waves. Proc. Coastal Dynm., Lund 2000.
  9. Delvigne. G.A.L. (1989). Barrier failure by critical accumulation of viscous oil. Proceedings of International Oil Spill Conference, American Petroleum institute, Washington D. C., 143-148
  10. Germano, M., Piomelli, U., Moin, P. and Cabot, W.H. (1991). A dynamic subgird-scale eddy viscosity model. Physical Fluids, A3, 1760-1765. https://doi.org/10.1063/1.857955
  11. Gingold, R.A. and Monaghan, J.J. (1977). Smoothed Particle Hydrodynamics: Theory and Application to Non-spherical stars, Monthly Notices of the Royal Astronomical Society, 181, 375-389. https://doi.org/10.1093/mnras/181.3.375
  12. Goodman, R.H., Brown, H.M., C.F. and Rowe, R.D. (1997). Dynamic modeling of oil boom failure using computational fluid dynamics. Proc. of 20th AMOP Tech. Seminar, Vancouver, BC, Canada.
  13. Lau, Y.L. and Moir, J. (1977). Booms used for oil slick control. Proceedings of the American Society of Civil Engineers, ASCE, 105(EE2), 369-382.
  14. Lucy, L.B. (1977). Numerical approach to testing the fission hypothesis. Astrophysical Journal, 82, 1013-1024.
  15. Meneveau, C., Lund, T.S. and Cabot, W.H. (1996). A Lagrangian dynamic subgird scale model of turbulence. Journal of Fluid Mechanics, 319, 353-385. https://doi.org/10.1017/S0022112096007379
  16. Milgram, J. H. and Van Houlten, R.J. (1978). Mechanics of a restrained layer of floating oil above a water current, J. Hydronautics, 12(3), 93-108. https://doi.org/10.2514/3.63119
  17. Monaghan, J.J. (1994). Simulating free surface flow with SPH. Journal of Computational Physics, 110, 399-406. https://doi.org/10.1006/jcph.1994.1034
  18. Morris, J.P., Fox, P.J. and Zhu, Y. (1997). Modelling low Reynolds number incompressible flows using SPH. Journal of Computational Physics, 136, 214-226. https://doi.org/10.1006/jcph.1997.5776
  19. Pope. Stephen B. (2004). Ten equations concerning the large-eddy simulation of turbulent flows. New Journal of Physics, 6(35), 1-24. https://doi.org/10.1088/1367-2630/6/1/001
  20. Rodi, Wolfgang. (1993). Turbulence models and their application in hydraulics - a state of art review. International Association for Hydraulic Research, Delft, 3rd edition 1993, Balkema.
  21. Shao, S. and Lo, E.Y.M. (2003). Incompressible SPH method for simulating Newtonian and non-Newtonian flows with a free surface. Advances in water resources, 26(7), 787-800. https://doi.org/10.1016/S0309-1708(03)00030-7
  22. Smagorinsky, J. (1963). General circulation experiments with the primitive equations. Monthly Weather Rev NWB, 93(99).
  23. Takeda, H., Miyama, S.M. and Sileya, M. (1994). Simulation of viscous flow by smoothed particle hydrodynamics. Progress of Theoretical Physics, 92, 939-960. https://doi.org/10.1143/ptp/92.5.939
  24. Violeau, D., Buvat, C., Abed-Meraim, K. and Nanteuil, E. (2007). Numerical modelling of boom and oil spill with SPH. Coastal engineering, 54(12), 895-913. https://doi.org/10.1016/j.coastaleng.2007.06.001
  25. Wilkinson, D. L. (1972). Dynamics of contained oil Slicks. J. Hydraulics Division, 98(HY6), 1013-1030.
  26. Yoshizawa, A. and Horiuti, K. (1985). A statistically-derived subgridscale kinetic energy mode for the large-eddy simulation of turbulent flows. Journal of the Physical of Japan, 54(8) 2834-2839. https://doi.org/10.1143/JPSJ.54.2834