DOI QR코드

DOI QR Code

A Numerical Simulation on Three-Dimensional Hydrodynamic Characteristics of Wave Height and Flow around Asymmetric Submerged Breakwaters

비대칭 잠제 주변의 파고 및 흐름의 3차원적인 수리특성에 관한 수치모의

  • Lee, Woo-Dong (Department of Civil Engineering, Nagoya University) ;
  • Hur, Dong-Soo (Department of Ocean Civil Engineering(Institute of Marine Industry), Gyeongsang National University) ;
  • Suh, Sung-Bu (Department of Naval Architecture and Ocean Engineering, Dong-Eui University)
  • 이우동 (나고야대학 공학연구과 사회기반공학) ;
  • 허동수 (국립경상대학교 해양과학대학 해양토목공학과(해양산업연구소)) ;
  • 서성부 (동의대학교 조선해양공학과)
  • Received : 2011.01.13
  • Accepted : 2011.06.20
  • Published : 2011.06.30

Abstract

In case of constructing submerged breakwaters for the purpose of preventing coastal erosion, the number of submerged breakwaters, as well as their asymmetry is dependent on the field conditions. The aim of the present study was to examine the 3-D hydrodynamic characteristics (3-D wave field, wave height, mean water level, and mean flow) around the asymmetric submerged breakwaters using a 3-D numerical model, LES-WASS-3D, which was validated through a comparison with existing experimental data and showed fairly nice agreement. From the numerical results, the wave height, mean water level, and mean flow are discussed in relation with the variation in the breakwater length ratio.

Keywords

References

  1. 이우동, 허동수, 박종배, 안성욱 (2009). "해빈경사에 따른 잠제개구부의 3차원적인 흐름특성에 관한 연구", 한국해양공학회지, 제23권, 제1호, pp 7-15.
  2. 조원철 (2006). "파랑 차단 성능 향상을 위한 다열 잠제 사이의 최적 간격에 관한 연구", 한국해양공학회지, 제20권, 제6호, pp 82-87.
  3. 허동수, 김도삼 (2003). "경사수역에 설치된 잠제 주변의 유속장 과 와의 발생에 대한 수치모의", 한국해안.해양공학회지, 한국해안.해양공학회지, 제15권 제3호, pp 151-158.
  4. 허동수, 이우동, 염경선 (2009). "잠제 설치 연안역의 파동장에 미치는 해안곡률의 영향", 대한토목학회논문집, 제29권, 제5B호, pp. 463-472.
  5. 허동수, 이우동 (2007). "잠제 주변의 파고분포 및 흐름의 3차원 특성; PART I-해빈이 없을 경우", 대한토목학회논문집, 제27권, 제6B호, pp 689-701.
  6. 허동수, 이우동 (2008a). "잠제 주변의 파고분포 및 흐름의 3차원 특성; PART II-해빈이 있을 경우", 대한토목학회논문집, 제28권, 제1B호, pp 115-123.
  7. 허동수, 이우동 (2008b). "잠제 설치 연안의 처오름 높이 특성; PART I-잠제의 평면배치에 의한 영향", 대한토목학회논문집, 제28권, 제3B호, pp 345-354.
  8. 허동수, 이우동 (2008c). "잠제 설치 연안의 처오름 높이 특성; PART II-잠제의 제원에 의한 영향", 대한토목학회논문집, 제28권, 제4B호, pp 429-439.
  9. 허동수, 이우동, 배기성 (2008). "사각격자체계 수치모델에서의 경사면 처리기법에 관하여", 대한토목학회논문집, 제28권, 제5B호, pp 591-594.
  10. 허동수, 이우동, 안성욱, 박종배 (2010). "신기능 잠제의 흐름 제어 기능에 관한 수치적 연구", 해안.해양공학회논문집, 제22권, 제3호, pp 181-190.
  11. 허동수, 최동석 (2008). "투과성잠제의 비탈면경사가 주변 파동장에 미치는 영향", 대한토목학회논문집, 제28권, 제2B호, pp 249-259.
  12. Calabrese, M., Vicinanza, D. and Buccino, M. (2008). "2D Wave Setup Behind submerged Breakwaters", Ocean Eng., Vol 35, pp 1015-1028. https://doi.org/10.1016/j.oceaneng.2008.03.005
  13. Drei, E. and Lamberti, A. (1999). "Wave Pumping Effect of a Submerged Barrier", Proc. International Conference on Coastal Structures, pp 667-674.
  14. Ergun, S. (1952). "Fluid Flow Through Packed Columns", Chem Eng., Vol 48, No 2, pp 89-94.
  15. Garcia, N., Lara J.L. and Losada, I.J. (2004). "2-D Numerical Analysis of Near-Field Flow at Low-Crested Permeable Breakwater", Coastal Eng., Vol 51, pp 991-1020. https://doi.org/10.1016/j.coastaleng.2004.07.017
  16. Gironella, X. and Sanchez-Arcilla, A. (1999). "Hydrodynamic Behaviour of Submerged Breakwater", Some Remarks Based on Experimental Results. Proc. International Conference on Coastal Structures, pp 891-896.
  17. Hirt, C.W. and Nichols, B.D. (1981). "Volume of Fluid (VOF) Method for the Dynamics of Free Boundaries", Journal of Computational Physics, Vol 39, No 1, pp 201-225. https://doi.org/10.1016/0021-9991(81)90145-5
  18. Hsu, T.W., Hsieh, C.M. and Hwang, R.R. (2004). "Using RANS to Simulate Vortex Generation and Dissipation Around Impermeable Submerged Double Breakwaters", Coastal Eng., Vol 51, pp 557-579. https://doi.org/10.1016/j.coastaleng.2004.06.003
  19. Hur, D.S. (2004). "Deformation of Multi-Directional Fandom Waves Passing Over an Impermeable Submerged Breakwater Installed on a Sloping bed", Ocean Eng., Vol 31, pp 1295-1311. https://doi.org/10.1016/j.oceaneng.2003.12.005
  20. Hur, D.S., Kim, C.H., Kim, D.S. and Yoon, J.S. (2008). "Simulation of the Nonlinear Dynamic Interactions Between Waves, a Submerged Breakwater and the Seabed", Ocean Eng., Vol 35, pp 511-522. https://doi.org/10.1016/j.oceaneng.2007.12.002
  21. Johnson, H.K., Karambas, T. V., Avgeris, I., Zanuttigh, B., Gonzalez-Maroco, D. and Caceres, I. (2005). "Modelling of Waves and Currents Around Submerged Breakwaters", Coastal Eng., Vol 52, pp 949-969. https://doi.org/10.1016/j.coastaleng.2005.09.011
  22. Johnson, H.K. (2006). "Wave Modelling in the Vicinity of Submerged Breakwaters", Coastal Eng., Vol 53, pp 39-48. https://doi.org/10.1016/j.coastaleng.2005.09.018
  23. Jeon, C.H. and Cho, Y.S. (2006). "Bragg Reflection of Sinusoidal Waves Due to Trapezoidal Submerged Breakwaters", Ocean Eng., Vol 33, pp 2067-2082. https://doi.org/10.1016/j.oceaneng.2005.07.013
  24. Kramer, M., Zanuttigh, B., van der Meer, J.W., Vidal, C. and Gironella, F.X. (2005). "Laboratory Experiments on Low-Crested Breakwaters", Coastal. Eng., Vol 52, pp 867-885. https://doi.org/10.1016/j.coastaleng.2005.09.002
  25. Kriezi, E.E., Karambas, Th.V., Prinos, P., Tilegrafos, A., Gironella, X. and Mosso,C. (1999). "Reflection and Transmission for Submerged and Rubble-Mound Breakwater", Proc. International Conference on Coastal Structures, pp 689-696.
  26. Liu, S. and Masliyah, J.H. (1999). Non-linear Flows in Porous Media. J. Non-Newtonian Fluid Mech., Vol 86, No 1, pp 229-252. https://doi.org/10.1016/S0377-0257(98)00210-9
  27. Losada, I.J., Losada, M.A. and Martin, F.L. (1997). "Harmonic Generation Past a Submerged Porous Step", Coastal Eng., Vol 31, pp 281-304. https://doi.org/10.1016/S0378-3839(97)00011-2
  28. Ma, H.H., Mizutani, N., Eguchi, S. and Hur, D.S. (2004). "Study on Beach Profile Change and Wave Induced Velocity Field in Permeable Beach", Journal of Civil Engineering in the Ocean, JSCE, Vol 20, pp 509-514 (in Japanese). https://doi.org/10.2208/prooe.20.509
  29. Martinelli, L., Zanuttigh, B. and Lamberti, A. (2006). "Hydrodynamic and Morphodynamic Response of Isolated and Multiple Low Crested Structures: Experiments and Simulations" Coastal Eng., Vol 53, pp 363-379. https://doi.org/10.1016/j.coastaleng.2005.10.018
  30. Osanai, K. and Minami, M. (2003). "Experimental Study on Vertical Velocity Distribution Around the Opening of Artificial Reefs", Journal of Civil Engineering in the Ocean, JSCE, Vol 19, pp 213-218 (in Japanese). https://doi.org/10.2208/prooe.19.213
  31. Smagorinsky, J. (1963). "General Circulation Experiments With the Primitive Equation" Mon. Weath. Rev. Vol 91, No 3, pp 99-164. https://doi.org/10.1175/1520-0493(1963)091<0099:GCEWTP>2.3.CO;2
  32. Sakakiyama, T. and Kajima, R. (1992). "Numerical Simulation of Nonlinear Wave Interacting with Permeable Breakwater", Proc. 23rd Int. Conf. Coastal Eng., ASCE, pp 1517-1530.
  33. van Gent, M.R.A. (1995). Wave Interaction with Permeable Coastal Structures, Ph.D. Thesis, Delft University The Netherlands.
  34. Yamashiro, M., Yoshida, A. and Irie, I. (1999). "Experimental Study on Wave Field Behind a Submerged Breakwater", Proc., International Conference on Coastal Structures, pp 675-682.
  35. Zanuttigh, B. (2007). "Numerical Modelling of the Morphological Response Induced by Low-Crested Structures in Lido di Dante, Italy", Coastal Eng., Vol 54, pp 31-47. https://doi.org/10.1016/j.coastaleng.2006.08.003
  36. Zyserman, J.A., Johnsona, H.K., Zanuttigh, B. and Martinelli, L. (2005). "Analysis of Far-Field Erosion Induced by Low-Crested Rubble-Mound Structures", Coastal Eng., Vol 52, pp 977-994. https://doi.org/10.1016/j.coastaleng.2005.09.013

Cited by

  1. Effect of Multi-directional Random Waves on Characteristics of 3-D Wave Field around Permeable Submerged Breakwaters vol.26, pp.2, 2012, https://doi.org/10.5574/KSOE.2012.26.2.068
  2. Applicability of Permeable Submerged Breakwater for Discharged Flow Control vol.49, pp.1, 2016, https://doi.org/10.3741/JKWRA.2016.49.1.51