DOI QR코드

DOI QR Code

전립선암의 소분할 방사선치료 시에 위치표지자 삽입의 유용성

Clinical Usefulness of Implanted Fiducial Markers for Hypofractionated Radiotherapy of Prostate Cancer

  • 최영민 (동아대학교 의과대학 방사선종양학교실) ;
  • 안성환 (동아대학교 의과대학 방사선종양학교실) ;
  • 이형식 (동아대학교 의과대학 방사선종양학교실) ;
  • 허원주 (동아대학교 의과대학 방사선종양학교실) ;
  • 윤진한 (동아대학교 의과대학 비뇨기과학교실) ;
  • 김태효 (동아대학교 의과대학 비뇨기과학교실) ;
  • 김수동 (동아대학교 의과대학 비뇨기과학교실) ;
  • 윤성국 (동아대학교 의과대학 영상의학교실)
  • Choi, Young-Min (Department of Radiation Oncology, Dong-A University School of Medicine) ;
  • Ahn, Sung-Hwan (Department of Radiation Oncology, Dong-A University School of Medicine) ;
  • Lee, Hyung-Sik (Department of Radiation Oncology, Dong-A University School of Medicine) ;
  • Hur, Won-Joo (Department of Radiation Oncology, Dong-A University School of Medicine) ;
  • Yoon, Jin-Han (Department of Urology, Dong-A University School of Medicine) ;
  • Kim, Tae-Hyo (Department of Urology, Dong-A University School of Medicine) ;
  • Kim, Soo-Dong (Department of Urology, Dong-A University School of Medicine) ;
  • Yun, Seong-Guk (Department of Radiology, Dong-A University School of Medicine)
  • 투고 : 2010.11.02
  • 심사 : 2011.03.21
  • 발행 : 2011.06.30

초록

목 적: 전립선암의 소분할 방사선치료에서 골반뼈를 기준으로 한 준비자세(setup)와 전립선에 삽입된 위치표지자(fiducial marker)를 이용한 준자세를 비교하였다. 대상 및 방법: 2009년 9월부터 2010년 8월까지 전립선암으로 근치적 소분할 방사선치료를 받은 4명의 환자를 대상으로 하였다. 방사선치료 1주일 전경에 경직장초음파 검사 하여 3개의 위치표지자를 직장을 통하여 전립선에 삽입하였다. 방사선치료계획용 컴퓨터단층촬영과 매 방사선치료 전에 직장 관장을 하였다. 소분할 방사선치료는 노발리스 장치를 이용하여, 매일 3.5 Gy씩 총 59.5 Gy를 계획하였다. 분할조사 전에 서로 수직인 두 방향의 kV X-선을 촬영하여 얻은 영상의 위치표지자와 방사선치료계획의 디지털재구성사진에서 관찰되는 위치표지자를 융합하여, 환자의 자세를 조정하고 준비자세를 하였다. 위치표지자 기준 준비자세에서 방사선치료계획의 디지털재구성사진과 kV X-선 영상의 골반뼈를 가상적으로 융합하여, 골반뼈 기준 준비자세를 구하였다. 결 과: 67회의 분할조사를 분석하였다. 위치표지자 기준 준비자세에서 방사선치료 중심점과의 3차원적 위치 차이의 평균은 $0.94{\pm}0.62$ mm (범위, 0.09~3.01 mm; 중앙값 0.81 mm)였고 좌우, 상하, 전후 방향으로 위치 차이의 평균은 각각 $0.39{\pm}0.34$ mm, $0.46{\pm}0.34$ mm, $0.57{\pm}0.59$ mm였다. 골반뼈 기준 준비자세에서 방사선치료 중심점과의 3차원적 위치 차이의 평균은 $3.15{\pm}2.03$ mm (범위, 0.25~8.23; 중앙값, 2.95 mm)였고, 상하 방향의 위치 차이(평균, $2.29{\pm}1.95$ mm)가 전후(평균, $1.73{\pm}1.31$ mm), 좌우(평균 $0.45{\pm}0.37$ mm) 방향보다 유의하게 컸다(p<0.05). 위치표지자 기준 준비자세와 골반뼈 기준 준비자세들에서 방사선치료 중심점과의 3차원적 위치 차이가 3 mm 이상이었던 경우는 전체 분할방사선조사 횟수의 1.5%와 49.3%였고, 5 mm 이상이었던 경우가 각각 0%, 17.9%였다. 결 론: 위치표지자를 이용하여 보다 정확하게 준비자세를 함으로써 계획용표적체적의 여유를 줄일 수 있고, 따라서 전립선 주변의 정상조직에 대한 방사선량을 감소시켜 보다 안전하게 소분할 방사선치료를 할 수 있을 것으로 예상된다.

Purpose: To assess the usefulness of implanted fiducial markers in the setup of hypofractionated radiotherapy for prostate cancer patients by comparing a fiducial marker matched setup with a pelvic bone match. Materials and Methods: Four prostate cancer patients treated with definitive hypofractionated radiotherapy between September 2009 and August 2010 were enrolled in this study. Three gold fiducial markers were implanted into the prostate and through the rectum under ultrasound guidance around a week before radiotherapy. Glycerin enemas were given prior to each radiotherapy planning CT and every radiotherapy session. Hypofractionated radiotherapy was planned for a total dose of 59.5 Gy in daily 3.5 Gy with using the Novalis system. Orthogonal kV X-rays were taken before radiotherapy. Treatment positions were adjusted according to the results from the fusion of the fiducial markers on digitally reconstructed radiographs of a radiotherapy plan with those on orthogonal kV X-rays. When the difference in the coordinates from the fiducial marker fusion was less than 1 mm, the patient position was approved for radiotherapy. A virtual bone matching was carried out at the fiducial marker matched position, and then a setup difference between the fiducial marker matching and bone matching was evaluated. Results: Three patients received a planned 17-fractionated radiotherapy and the rest underwent 16 fractionations. The setup error of the fiducial marker matching was $0.94{\pm}0.62$ mm (range, 0.09 to 3.01 mm; median, 0.81 mm), and the means of the lateral, craniocaudal, and anteroposterior errors were $0.39{\pm}0.34$ mm, $0.46{\pm}0.34$ mm, and $0.57{\pm}0.59$ mm, respectively. The setup error of the pelvic bony matching was $3.15{\pm}2.03$ mm (range, 0.25 to 8.23 mm; median, 2.95 mm), and the error of craniocaudal direction ($2.29{\pm}1.95$ mm) was significantly larger than those of anteroposterior ($1.73{\pm}1.31$ mm) and lateral directions ($0.45{\pm}0.37$ mm), respectively (p<0.05). Incidences of over 3 mm and 5 mm in setup difference among the fractionations were 1.5% and 0% in the fiducial marker matching, respectively, and 49.3% and 17.9% in the pelvic bone matching, respectively. Conclusion: The more precise setup of hypofractionated radiotherapy for prostate cancer patients is feasible with the implanted fiducial marker matching compared with the pelvic bony matching. Therefore, a less marginal expansion of planning target volume produces less radiation exposure to adjacent normal tissues, which could ultimately make hypofractionated radiotherapy safer.

키워드

참고문헌

  1. Zelefsky MJ, Leibel SA, Gaudin PB, et al. Dose escalation with three-dimensional conformal radiation therapy affects the outcome in prostate cancer. Int J Radiat Oncol Biol Phys 1998;41:491-500 https://doi.org/10.1016/S0360-3016(98)00091-1
  2. Zietman AL, DeSilvio ML, Slater JD, et al. Comparison of conventional-dose vs high-dose conformal radiation therapy in clinically localized adenocarcinoma of the prostate: a randomized controlled trial. JAMA 2005;294:1233-1239 https://doi.org/10.1001/jama.294.10.1233
  3. Pollack A, Zagars GK, Starkschall G, et al. Prostate cancer radiation dose response: results of the M. D. Anderson phase III randomized trial. Int J Radiat Oncol Biol Phys 2002;53:1097-1105 https://doi.org/10.1016/S0360-3016(02)02829-8
  4. Storey MR, Pollack A, Zagars G, Smith L, Antolak J, Rosen I. Complications from radiotherapy dose escalation in prostate cancer: preliminary results of a randomized trial. Int J Radiat Oncol Biol Phys 2000;48:635-642 https://doi.org/10.1016/S0360-3016(00)00700-8
  5. Huang EH, Pollack A, Levy L, et al. Late rectal toxicity: dose-volume effects of conformal radiotherapy for prostate cancer. Int J Radiat Oncol Biol Phys 2002;54:1314-1321 https://doi.org/10.1016/S0360-3016(02)03742-2
  6. de Crevoisier R, Tucker SL, Dong L, et al. Increased risk of biochemical and local failure in patients with distended rectum on the planning CT for prostate cancer radiotherapy. Int J Radiat Oncol Biol Phys 2005;62:965-973 https://doi.org/10.1016/j.ijrobp.2004.11.032
  7. Heemsbergen WD, Hoogeman MS, Witte MG, Peeters ST, Incrocci L, Lebesque JV. Increased risk of biochemical and clinical failure for prostate patients with a large rectum at radiotherapy planning: results from the Dutch trial of 68 GY versus 78 Gy. Int J Radiat Oncol Biol Phys 2007;67:1418-1424 https://doi.org/10.1016/j.ijrobp.2006.11.014
  8. Watchman CJ, Hamilton RJ, Stea B, Mignault AJ. Patient positioning using implanted gold markers with the Novalis Body system in the thoracic spine. Neurosurgery 2008;62(5 Suppl):A62-A68 https://doi.org/10.1227/01.neu.0000325938.08605.eb
  9. Soete G, De Cock M, Verellen D, Michielsen D, Keuppens F, Storme G. X-ray-assisted positioning of patients treated by conformal arc radiotherapy for prostate cancer: comparison of setup accuracy using implanted markers versus bony structures. Int J Radiat Oncol Biol Phys 2007;67:823-827 https://doi.org/10.1016/j.ijrobp.2006.09.041
  10. Brenner DJ, Hall EJ. Fractionation and protraction for radiotherapy of prostate carcinoma. Int J Radiat Oncol Biol Phys 1999;43:1095-1101 https://doi.org/10.1016/S0360-3016(98)00438-6
  11. Brenner DJ, Martinez AA, Edmundson GK, Mitchell C, Thames HD, Armour EP. Direct evidence that prostate tumors show high sensitivity to fractionation (low alpha/beta ratio), similar to late-responding normal tissue. Int J Radiat Oncol Biol Phys 2002;52:6-13 https://doi.org/10.1016/S0360-3016(01)02664-5
  12. Roeske JC, Forman JD, Mesina CF, et al. Evaluation of changes in the size and location of the prostate, seminal vesicles, bladder, and rectum during a course of external beam radiation therapy. Int J Radiat Oncol Biol Phys 1995;33:1321-1329 https://doi.org/10.1016/0360-3016(95)00225-1
  13. van Herk M, Bruce A, Kroes AP, Shouman T, Touw A, Lebesque JV. Quantification of organ motion during conformal radiotherapy of the prostate by three dimensional image registration. Int J Radiat Oncol Biol Phys 1995;33:1311-1320 https://doi.org/10.1016/0360-3016(95)00116-6
  14. Beard CJ, Kijewski P, Bussiere M, et al. Analysis of prostate and seminal vesicle motion: implications for treatment planning. Int J Radiat Oncol Biol Phys 1996;34:451-458 https://doi.org/10.1016/0360-3016(95)02081-0
  15. Fiorino C, Di Muzio N, Broggi S, et al. Evidence of limited motion of the prostate by carefully emptying the rectum as assessed by daily MVCT image guidance with helical tomotherapy. Int J Radiat Oncol Biol Phys 2008;71:611-617 https://doi.org/10.1016/j.ijrobp.2008.01.048
  16. Nijkamp J, Pos FJ, Nuver TT, et al. Adaptive radiotherapy for prostate cancer using kilovoltage cone-beam computed tomography: first clinical results. Int J Radiat Oncol Biol Phys 2008;70:75-82 https://doi.org/10.1016/j.ijrobp.2007.05.046
  17. Ogino I, Uemura H, Inoue T, Kubota Y, Nomura K, Okamoto N. Reduction of prostate motion by removal of gas in rectum during radiotherapy. Int J Radiat Oncol Biol Phys 2008;72:456-466 https://doi.org/10.1016/j.ijrobp.2008.01.004
  18. van Herk M, Remeijer P, Rasch C, Lebesque JV. The probability of correct target dosage: dose-population histograms for deriving treatment margins in radiotherapy. Int J Radiat Oncol Biol Phys 2000;47:1121-1135 https://doi.org/10.1016/S0360-3016(00)00518-6
  19. Melancon AD, O'Daniel JC, Zhang L, et al. Is a 3-mm intrafractional margin sufficient for daily image-guided intensitymodulated radiation therapy of prostate cancer? Radiother Oncol 2007;85:251-259 https://doi.org/10.1016/j.radonc.2007.08.008
  20. Li HS, Chetty IJ, Enke CA, et al. Dosimetric consequences of intrafraction prostate motion. Int J Radiat Oncol Biol Phys 2008;71:801-812 https://doi.org/10.1016/j.ijrobp.2007.10.049
  21. Ghilezan MJ, Jaffray DA, Siewerdsen JH, et al. Prostate gland motion assessed with cine-magnetic resonance imaging (cine-MRI). Int J Radiat Oncol Biol Phys 2005;62:406-417 https://doi.org/10.1016/j.ijrobp.2003.10.017