DOI QR코드

DOI QR Code

나노인덴테이션 해석을 통한 Ag/Cu층에서 발생하는 Misfit 전위의 slip 특성에 대한 연구

Nanoindentation on the Layered Ag/Cu for Investigating Slip of Misfit Dislocation

  • Trandinh, Long (Division of Mechanical and Automotive Engineering, Kongju National University) ;
  • Ryu, Yong-Moon (Korea Automotive Technology Institute) ;
  • Cheon, Seong-Sik (Division of Mechanical and Automotive Engineering, Kongju National University)
  • 발행 : 2011.06.30

초록

Ag/Cu층에서 발생하는 misfit 전위를 분석하기 위하여, EAM기법을 활용한 나노인덴테이션 해석을 수행하였다. N$\'{o}$se-Hoover 서모스텟 조건에 의거하여, 2-5nm 정도의 두께를 갖는 필름층에 구형 인덴터로 압입하였다. 해석결과는 misfit 전위에 대한 상대적인 압입위치가, 4nm이하의 필름에 대하여 영향을 미치는 것으로 나타났다. 전위에 의한 슬립 발생할 때 탄성에너지 변화는 Ag/Cu의 연화의 중요한 변수로 작용하며, 각각의 경우에 대하여 임계필름두께에 대해서도 고찰하였다.

The EAM simulation of nanoindentation was performed to investigate misfit dislocation slip in the Ag/Cu. The film layer, whose thickness in the range of 2-5nm, was indented by a spherical indenter with the N$\'{o}$se-Hoover thermostat condition. The simulation shows that the indentation position relative to misfit dislocation (MFD) has the effect on the dislocation, glide up or cross slip, for Ag film layer thickness less than 4 nm. Elastic energy variation during MFDs slip was revealed to be a key factor for the softening of Ag/Cu. The critical film layer thickness was evaluated for each case of Ag/Cu according to the spline extrapolation technique.

키워드

참고문헌

  1. Phong, "Investigation of antibacterial activity of cotton fabric incorporating nano silver colloid," J. Physics: Conference Series, Vol. 187, 2009, p. 012072. https://doi.org/10.1088/1742-6596/187/1/012072
  2. H. Wang, J. Wang, J. Hong, Q. Wei, W. Gao and Z. Zhu, "Preparation and characterization of Ag nanocomposite textile," J. Coating Technology Research, Vol. 4, 2007, pp. 101-106. https://doi.org/10.1007/s11998-007-9001-8
  3. P. S. Phani, D. S. Rao, S. V. Joshi and G. Sundararajan, "Effect of process parameters and heat treatments on properties of cold sprayed Cu coatings," J Thermal Spray Technology, Vol. 16, 2007, pp. 425-434. https://doi.org/10.1007/s11666-007-9048-1
  4. S. Q. Wang, H. Zhao, Y. Wang, C. M Li, Z. H. Chen and V. Paulose, "Ag-coated near field optical scanning microscope probes fabricated by Ag mirror reaction," Applied Physics B, Vol. 92, 2008, pp. 49-52. https://doi.org/10.1007/s00340-008-3054-y
  5. P. Wrobel, J. Pniewki, T. J. Antosiewicz and T. Szoplik, "Focusing radially polarized light by concentrically corrugated Ag film without a hole," Physical Review letters, Vol. 102, 2009, p. 183902. https://doi.org/10.1103/PhysRevLett.102.183902
  6. G. Bartal, G. Lerosey and X. Zhang, "Subwavelength dynamic focusing in plasmonic nanostructures using time reversal," Physical Review B, Vol. 79, 2009, p. 201103. https://doi.org/10.1103/PhysRevB.79.201103
  7. S. Nakahara and E.C. Felder, "Generation of grown-in dislocations at Ni-Cu misfit boundaries during three-dimensional nucleation and growth," Thin Solid Films, Vol. 91, 1982, pp. 111-122. https://doi.org/10.1016/0040-6090(82)90424-2
  8. A. Misra, J. P. Hirth and H. Kung, "Single-dislocation-based strengthening mechanisms in nanoscale metallic multilayers," Philosophical Magazine A, Vol. 82, 2002, pp. 2935-2951. https://doi.org/10.1080/01418610208239626
  9. "Microstructures and strength of nanoscale Cu-Ag multilayers," Scripta Materialia, Vol. 46, 2002, pp. 593-598. https://doi.org/10.1016/S1359-6462(02)00036-2
  10. "The deformation and ageing of mild steel: III discussion of results," Proceeding of Physical Society B, Vol. 64, 1951, pp. 747-753. https://doi.org/10.1088/0370-1301/64/9/303
  11. "The cleavage strength of polycrystals," J. Iron Steel Institute, Vol. 174, 1953, pp. 25-28.
  12. Hull and D. J. Bacon, "Introduction to Dislocations," 4th ed., Butterworth-Heinemann, Oxford 2001, chapter 5.
  13. "Cracking and adhesion at small scales: atomistic and continuum studies of flaw tolerant nanostructures," Modelling and Simulation in Materials Science and Engineering, Vol. 14, 2006, pp. 799-816. https://doi.org/10.1088/0965-0393/14/5/001
  14. S. M. Han, M. A. Phillips and W. D. Nix, "Study of strain softening behavior of Al-Al3Sc multilayers using microcompression testing," Acta Materialia, Vol. 57, 2009, pp. 4473-4490. https://doi.org/10.1016/j.actamat.2009.06.007
  15. H. V. Swygenhoven, M. Spaczer, A. Caro and D. Farkas, "Competing plastic deformation mechanisms in nanophase metals," Physical Review B, Vol. 60, 1999, p. 22. https://doi.org/10.1103/PhysRevB.60.22
  16. H. V. Swygenhoven, P. M. Derlet and A. Hasnaoui, "Atomic mechanism for dislocation emission from nanosized grain boundaries," Physical Review B, Vol. 66, 2002, p. 024101. https://doi.org/10.1103/PhysRevB.66.024101
  17. A. Jerusalem and R. Radovitzky R, "A continuum model of nanocrystalline metals under shock loading," Modelling and Simulation in Materials Science and Engineering, Vol. 17, 2009, p. 025001. https://doi.org/10.1088/0965-0393/17/2/025001
  18. D. Saraev D and R. E. Miller, "Atomic-scale simulation of nanoindentation-induced plasticity in copper crystals with nanometer-sized nickel coatings," Acta Materialia, Vol. 54, 2006, pp. 33-45. https://doi.org/10.1016/j.actamat.2005.08.030
  19. W. C. Oliver and G. M. Pharr, "Measurement of hardness and elastic modulus by instrumented indentation: Advances in understanding and refinements to methodology," J Materials Research, Vol. 19, 2004, pp. 3-20. https://doi.org/10.1557/jmr.2004.19.1.3
  20. R. Smith R, D. Christopher and S. D. Kenny, "Defect generation and pileup of atoms during nanoindentation of Fe single crystals," Physical Review B, Vol. 67, 2003, p. 245405. https://doi.org/10.1103/PhysRevB.67.245405
  21. M. S. Daw and M. I. Baskes, "Embedded-atom method: Derivation and application to impurities, surfaces, and other defects in metals," Physical Review B, Vol. 29, 1984, pp. 6443-6453. https://doi.org/10.1103/PhysRevB.29.6443
  22. S. M. Foiles, M. I. Baskes and M. S. Daw, "Embedded-atom-method functions for the fcc metals Cu, Ag, Au, Ni, Pd, Pt, and their alloys," Physical Review B, Vol. 33, 1986, pp. 7983-7991. https://doi.org/10.1103/PhysRevB.33.7983
  23. "Atomistic modeling of the $\gamma$ and ${\gamma}'$-phases of the Ni-Al system," Acta Materialia, Vol. 52, 2004. pp. 1451- 1467. https://doi.org/10.1016/j.actamat.2003.11.026
  24. F. Heringhaus, H. J. Schneider and G. Gottstein, "Analytical modeling of the electrical conductivity of metal matrix composites: application to Ag-Cu and Cu-Nb," Materials Science and Engineering A, Vol. 347, 2003, pp. 9-20. https://doi.org/10.1016/S0921-5093(02)00590-7
  25. D. W. Yao and L. Meng, "Effects of solute, temperature and strain on the electrical resistivity of Cu-Ag filamentary composites," Physica B, Vol. 403, 2008, pp. 3384-3388. https://doi.org/10.1016/j.physb.2008.04.038
  26. Y. T. Ning, X. H. Zhang and Y. J. Wu, "Electrical conductivity of Cu-Ag in situ filamentary composites," The Transactions of Nonferrous Metals Society of China, Vol. 17, 2007, pp. 378-383. https://doi.org/10.1016/S1003-6326(07)60102-2
  27. N. W. Ashcroft and N. D. Mermin, Solid State Physics, Harcourt College Publishers, New York, 1976.
  28. H. N. G. Wadley, X. W. Zhou, R. A. Johnson and M. Nuerock, "Mechanisms, models and methods of vapour deposition," Progress in Materials Science, Vol. 46, 2001, p. 329. https://doi.org/10.1016/S0079-6425(00)00009-8
  29. . A. Johnson, "Alloy models with the embedded atom method," Physical Review B, Vol. 39, 1989, p. 12554. https://doi.org/10.1103/PhysRevB.39.12554
  30. C. L. Kelehner, S. J. Plimpton and J. C, Hamilton, "Dislocation nucleation and defect structure during surface indentation," Physical Review B, Vol. 58, 1998, p. 11085. https://doi.org/10.1103/PhysRevB.58.11085
  31. E. T. Lilleodden, J. A. Zimmerman, S. M. Foiles and W. D. Nix, "Atomistic simulations of elastic deformation and dislocation nucleation during nanoindentation," J. Mechanics and Physics of Solids, Vol. 51, 2003, pp. 901-920. https://doi.org/10.1016/S0022-5096(02)00119-9
  32. S. Nose, "A unified formulation of the constant temperature molecular dynamics methods," J. Chemical Physics, Vol. 81, 1984, p. 511. https://doi.org/10.1063/1.447334
  33. W. G. Hoover, "Canonical dynamics: Equilibrium phase-space distributions," Physical Review A, Vol. 31, 1985, p. 1695. https://doi.org/10.1103/PhysRevA.31.1695
  34. S. J. Plimpton and B. A. Hendrickson, "In: J. Broughton, P. Bristowe, J. Newsam, (editors), Materials theory and modelling," MRS Proceedings, Vol. 291, 1993, p. 37 Pittsburg(PA).
  35. 트란딘 롱, 김엄기, 전성식, "분자동력학 해석을 이용한 인덴테이션시 실리콘 내부의 결함구조에 관한 연구," 한국복합재료학회 논문집, Vol. 22, 2009, pp. 9-17.
  36. K. J. Van Vliet, J. Li, T. Zhu, S. Yip and S. Suresh, "Quantifying the early stages of plasticity through nanoscale experiments and simulations," Physical Review B, Vol. 67, 2003, p. 104105. https://doi.org/10.1103/PhysRevB.67.104105
  37. J. Lian, J. Wang, Y. Y. Kim and J. Greer, "Sample boundary affect in nanoindentation of nano and microscale surface structures," J. the Mechanics and Physics of Solids, Vol. 57, 2009, pp. 812-827. https://doi.org/10.1016/j.jmps.2009.01.008
  38. G. Lu, V. V. Bulatov and N. Kioussis, "Dislocation constriction and cross-slip: An ab initio study," Physical Review B, Vol. 66, 2002, p. 144103 https://doi.org/10.1103/PhysRevB.66.144103
  39. A. C. Fisher-Cripps, Introduction to contact mechanics, 2nd ed., Springer, New York, 2007.
  40. J. Schiotz and K. W. Jackobsen, "A Maximum in the Strength of Nanocrystalline Copper," Science, Vol. 301, 2003, pp. 1357-1359. https://doi.org/10.1126/science.1086636
  41. S. Yip, "The Strongest Size," Nature, Vol. 391 1998, pp. 532-533. https://doi.org/10.1038/35254
  42. K W. Jackobsen and J. Schiotz, "Computational materials science: Nanoscale plasticity," Natural Materials, Vol. 1, 2002, pp. 15-16. https://doi.org/10.1038/nmat718
  43. P. G. Sanders, J. A. Eastman and J. R. Weertman, "Elastic and tensile behavior of nanocrystalline copper and palladium," Acta Materialia, Vol. 45, 1997, pp. 4019-4025. https://doi.org/10.1016/S1359-6454(97)00092-X