Thermal Properties of Alkaline-Hydrolyzed Polyacrylonitrile

알칼리 가수분해 폴리아크릴로니트릴의 열적 특성

  • Park, Kil-Young (Department of Organic Materials & Fiber Engineering, Chonbuk National University) ;
  • Lim, Sung-Su (Department of Organic Materials & Fiber Engineering, Chonbuk National University) ;
  • Kim, Su-Bong (Department of Organic Materials & Fiber Engineering, Chonbuk National University) ;
  • Kim, Ki-Young (Convergent Textile Technology Group, Korea Institute of Industrial Technology) ;
  • Chung, Yong-Sik (Department of Organic Materials & Fiber Engineering, Chonbuk National University)
  • 박길영 (전북대학교 공과대학 유기소재파이버공학과) ;
  • 임성수 (전북대학교 공과대학 유기소재파이버공학과) ;
  • 김수봉 (전북대학교 공과대학 유기소재파이버공학과) ;
  • 김기영 (한국생산기술연구원 섬유융합연구부) ;
  • 정용식 (전북대학교 공과대학 유기소재파이버공학과)
  • Received : 2011.01.17
  • Accepted : 2011.04.01
  • Published : 2011.04.28

Abstract

Polyacrylonitrile (PAN) homopolymer was hydrolyzed by NaOH to a limited extent. Alkali hydrolysis was carried in a homogeneous solution state and heterogeneous aqueous dispersion state. The PAN homopolymer was dissolved into NaSCN and $ZnCl_2$ solutions, respectively. The carboxylic groups were introduced by hydrolysis of the nitrile groups within the PAN homopolymer main chain. The introduced carboxylic groups lowered the exothermic temperature and the heat of reaction. As the NaOH concentration increased, the exotherm maxima and heat of reaction decreased. Therefore, the fibers from the alkaline-hydrolyzed PAN possess potential for use in simple preparation of carbon fiber precursors.

Keywords

Acknowledgement

Grant : 소재원천기술개발사업

Supported by : 지식경제부

References

  1. P. Morgan, "Carbon Fibers and Their Composites", Taylor & Francis, USA, 2005, pp.185-267.
  2. G. Henrici-Olive and S. Olive, "The Chemistry of Carbon Fiber Formation from Polyactlyonitrile", Monsnto Textiles Company, USA, 1982, pp.4-58.
  3. M. S. A. Rahaman, A. F. Ismail, and A. Mustafa, "A Review of Heat Treatment on Polyacrylonirile Fiber", Polym Degrad Stabil, 2007, 92, 1421-1432. https://doi.org/10.1016/j.polymdegradstab.2007.03.023
  4. O. P. Bahl and L. M. Manocha, "Characterization of Oxidised PAN Fibres", Carbon, 1974, 12, 417-423. https://doi.org/10.1016/0008-6223(74)90007-4
  5. M. Balasubramanian, M. K. Jain, S. K. Bhattacharya, and A. S. Abhiraman, "Conversion of Acrylonitrile-based Precursors to Carbon Fibers", J Mater Sci, 1987, 22, 3864-3872. https://doi.org/10.1007/BF01133333
  6. S. Hajir Bahrami, P. Bajaj, and K. Sen, "Thermal Behavior of Acrylonitrile Caboxylic Acid Copolymers", J Appl Polym Sci, 2003, 88, 685-698. https://doi.org/10.1002/app.11637
  7. J. S. Tsai and C. H. Lin, "Effect of Comonomer Composition on the Properties of Polyacrylonitrile Precursor and Resulting Carbon Fiber", J Appl Polym Sci, 1991, 43(4), 679-685. https://doi.org/10.1002/app.1991.070430405
  8. A. Sedghi, R. E. Farasani, and A. Shokuhfar, "The Effect of Commerical Polyacrylonitrile Fibers Characterizations on the Produced Carbon Fibers Properties", J Mater Proc Technol, 2008, 198, 60-67. https://doi.org/10.1016/j.jmatprotec.2007.06.052
  9. R. D. Mehta, "Soil-Release Properties of Acrylic Fabrics After Controled Alkaline Treatments", Text Res J, 1981, 51, 57-58. https://doi.org/10.1177/004051758105100113