Synthesis and Non-isothermal Crystallization Behavior of Poly(glycolide-co-${\varepsilon}$-caprolactone) Block Copolymer

Poly(glycolide-co-${\varepsilon}$-caprolactone) 블록 공중합체의 합성과 비등온 결정화 거동 분석

  • Choi, Song-Yeon (Department of Advanced Organic Materials and Textile System Engineering, Chungnam National University) ;
  • Jee, Min-Ho (Department of Advanced Organic Materials and Textile System Engineering, Chungnam National University) ;
  • Park, Nam-Jib (Department of Advanced Organic Materials and Textile System Engineering, Chungnam National University) ;
  • Song, Seung-Ho (R&D Team, Meta-Biomed Co. Ltd.) ;
  • Choi, Kyo-Chang (R&D Team, Meta-Biomed Co. Ltd.) ;
  • Baik, Doo-Hyun (Department of Advanced Organic Materials and Textile System Engineering, Chungnam National University)
  • 최송연 (충남대학교 유기소재.섬유시스템공학과) ;
  • 지민호 (충남대학교 유기소재.섬유시스템공학과) ;
  • 박남집 (충남대학교 유기소재.섬유시스템공학과) ;
  • 송승호 ((주)메타바이오메드 기술연구소) ;
  • 최교창 ((주)메타바이오메드 기술연구소) ;
  • 백두현 (충남대학교 유기소재.섬유시스템공학과)
  • Received : 2011.01.10
  • Accepted : 2011.02.06
  • Published : 2011.02.28

Abstract

Poly(glycolide-co-${\varepsilon}$-caprolactone)(PGCL) block copolymers were synthesized by two step polymerization using glycolide and ${\varepsilon}$-caprolactone as starting materials. The chain-microstructures of the resulting block copolymers were characterized by $^1H-NMR$. The structure and thermal properties of the PGCL block copolymer were strongly affected by the chain-microstructure of the prepolymer. The non-isothermal crystallization behavior of the PGCL block copolymers was examined at various cooling rates and analyzed with modified-Avrami and Ziabicki equations. The PGCL block copolymer with a lower degree of randomness in the prepolymer block had a higher crystallization temperature and faster crystallization rate, which suggests that differences in chain-microstructure of the PGCL prepolymer can affect the crystallization characteristics, such as crystallinity and crystallization rate.

Keywords

Acknowledgement

Supported by : (주)메타바이오메드

References

  1. L. S. Nair and C. T. Laurencin, "Biodegradable Polymers as Biomaterials", Prog Polym Sci, 2007, 32, 762-798. https://doi.org/10.1016/j.progpolymsci.2007.05.017
  2. M. Vert, "Aliphatic Polyesters: Great Degradable Polymers that Cannot do Everything", Biomacromolecules, 2005, 6, 538-546. https://doi.org/10.1021/bm0494702
  3. A.-C. Albertsson and I. K. Varma, "Recent Developments in Ring Opening Polymerization of Lactones for Biomedical Applications", Biomacromolecules, 2003, 4, 1466-1486. https://doi.org/10.1021/bm034247a
  4. K. Tomihata, M. Suzuke, T. Oka, and Y Ikada, "A New Resorbable Monofilament Suture", Polym Degrad Stab, 1998, 59, 13-18. https://doi.org/10.1016/S0141-3910(97)00183-3
  5. A. Pandey, G. C. Pandey, and P. B. Aswath, "Synthesis of Polylactic Acid-polyglycolic Acid Blends Using Microwave Radiation", J Mech Beha of Biomedi Mat I, 2008, 227-233.
  6. P. Dobrzynski, "Synthesis of Biodegradable Copolymers with Low-toxicity Zirconium Compound III Synthesis and Chain-microstructure Analysis of Terpolymer Obtained from L-lactide, Glycolide, and $\epsilon$-caprolactone Initiated by Zirconium(IV) Acetylacetonate", J Polym Sci Part A: Polym Chem, 2002, 40, 3129-3143. https://doi.org/10.1002/pola.10401
  7. H. R. Kricheldorf and T. Mang, "Polylactone 1. Copolymeri-zation of Glycolide and $\epsilon$-caprolactone", Macromolecules, 1984, 17, 2173-2181. https://doi.org/10.1021/ma00140a051
  8. R. S. Bezwada, D. D. Jamiolkowski, and I. Y Lee, "Monocryl Suture, a New Ultra-pliable Absorbable Monofilament Suture", Biomaterials, 1995, 16, 1141-1148. https://doi.org/10.1016/0142-9612(95)93577-Z
  9. J. Kasperczyk, "Copolymerization of Glycolide and e-caprolactone, 1 Analysis of the Copolymer Microstructure by Mean of $^1H$ and $^{13}C$ NMR Spectroscopy", Macromol Chem Phys, 1999, 200, 903-910. https://doi.org/10.1002/(SICI)1521-3935(19990401)200:4<903::AID-MACP903>3.0.CO;2-6
  10. Z. Wei, L. Liu, C. Qu, and M. Qi, "Microstructure Analysis and Thermal Properties L-lactide/$\epsilon$-caprolactone Copolymers Obtained with Magnesium Octoate", Polymer, 2009, 50, 1423-1429. https://doi.org/10.1016/j.polymer.2009.01.015
  11. J. W. Pack, S. H. Kim, I. W. Cho, S. Y Park, and Y. H. Kim, "Microstructure Analysis and Thermal Property of Copolymers Made of Glycolide and $\epsilon$-caprolactone by Stannous Octoate", J Polym Sci: Part A : Polym Chem, 2002, 40, 544-554. https://doi.org/10.1002/pola.10123
  12. R. S. Bezwada, D. D. Jamiolkowski, and S. W. Shalaby, "Segmented Copolymers of f-caprolactone and Glycolide", US Pantent, 5,133,739 (1992).
  13. D. D. Jamiolkowski and S. W. Shalaby, "Surgical Articles of Copolymers of Glycolide and £-caprolactone and Methods of Rosucing the Same", US Patent, 4,700,704 (1987).
  14. M. L. Di Lorenzo and C. Silvestre, "Non-isothermal Crystallization of Polymers", Prog Polym Sci, 1999, 24, 917-950. https://doi.org/10.1016/S0079-6700(99)00019-2
  15. M. H. Jee, M. H. Lee, Y. H. Yoon, and D. H. Baik, "Synthesis and Properties of Poly(ethylene 2,6-naphthalate)/ MWNT Nanocomposites Prepared by in situ Polymerization (II) -Non-isothermal Crystallization-", Text Sci Eng, 2008, 45, 33-39.
  16. M. Avrami, "Kinetcs of Phase Change I. General Theory", J Chem Phys, 1939,7, 1103-1112. https://doi.org/10.1063/1.1750380
  17. A. Avrami, "Kinetics of Phase Change II. Transformation-Time Relations for Random Distribution of Nuclei", J Chem Phys, 1940, 8, 212-224. https://doi.org/10.1063/1.1750631
  18. A. Ziabicki, "Theoretical Analysis of Oriented and Non Isothermal Crystallization I. Phenomenological Considerations. Isothermal Crystallization Accompaniedby Simultaneous Orientation or Disorientation", Coll Polym Sci, 1974, 252, 207-222. https://doi.org/10.1007/BF01638101
  19. A. Ziabicki, "Crystallization of Polymers in Variable External Conditions. 1. General Equations", Coll Polym Sci, 1996, 274, 209-217. https://doi.org/10.1007/BF00665637
  20. A. Ziabicki, "Crystallization of Polymers in Variable External Conditions. 2. Effects of Cooling in the Absence of Stress and Orientation", Coll Polym Sci, 1996, 274, 705-716. https://doi.org/10.1007/BF00654665
  21. A. Ziabicki and P. Sajkiewicz, "Crystallization of Polymers in Variable External Conditions. Ill: Experimental Determination of Kinetic Characteristics", Coll Polym Sci, 1998, 276, 680-689. https://doi.org/10.1007/s003960050297
  22. N. J. Park, M. H. Jee, S. H. Song, S. K. Ahn, K. C. Choi, and D. H. Baik, "Synthesis and Characterization of Poly(glycolide-co-$\epsilon$-caprolactone)", Text Sci Eng, 2010, 47, 1-7.
  23. P. Dorbzynsky, S. Li, J. Kasperczyk, M. Bero, F. Gasc, and M. Vert, "Structure-Prooerty Relationships of Copolymers Obtained by Ring-Opening Polymerization of Glycolide and $\epsilon$-caprolactone. Part 1. Synthesis and Characterization", Biomacromolecules, 2005, 6, 483-488. https://doi.org/10.1021/bm0494592